一、金刚石和立方氮化硼的烧结(论文文献综述)
徐博[1](2021)在《晶格缺陷对立方氮化硼热导率影响的分子动力学模拟》文中研究指明
王永凯,位星,王大鹏,魏朝阳,刘红伟,鲁翠莲,张相法[2](2021)在《六方氮化硼直接转化合成多晶立方氮化硼的研究》文中指出以六方氮化硼为初始材料,采用直接转化法在9~15 GPa、1 500~2 100℃的条件下合成多晶立方氮化硼。采用X射线衍射仪、扫描电子显微镜、维氏硬度计,对多晶立方氮化硼块材的微观结构和力学性能进行表征。结果表明:在合适的温度、压力条件下,六方氮化硼可转化为纯相多晶立方氮化硼,其晶粒尺寸最小约为70 nm,最大可达10μm以上;在温度相同条件下,多晶立方氮化硼块材的晶粒尺寸随着合成压力的升高而减小,硬度随着合成压力的升高而增大,最高硬度可达64.45 GPa。
刘彩云[3](2021)在《高质量立方氮化硼薄膜的射频磁控溅射制备及其半导体性能探索》文中研究说明立方氮化硼(c-BN),是一种人工合成的超宽禁带半导体材料,其禁带宽度在6.1-6.4eV范围内,具有优异的物理化学性能,可通过掺杂形成n型或p型半导体材料,在力、热、光、电子学等领域有很大的应用潜力。此外,它具有仅次于金刚石的硬度、介电常数小、寄生电容小、工作温度高、抗高能粒子辐射、耐腐蚀等优点,且材料的击穿电压较高,使得器件更适合在高温、强辐射等恶劣环境下稳定工作,是极端电子学材料。目前,由于生长工艺的限制以及晶格失配等问题,制备稳定的高质量、大面积c-BN薄膜还面临很大的困难,此外,c-BN薄膜在制备过程中不可避免地存在应力过大的问题,这些问题限制了c-BN薄膜的工业应用。基于此,本文主要研究射频磁控溅射法制备高质量、高立方相含量的c-BN薄膜,通过降低内应力提高c-BN薄膜的稳定性,并对c-BN薄膜的半导体性能进行了相应探索。本论文主要研究内容为:(1)不同工艺条件对生长c-BN薄膜的影响。c-BN的生长窗口狭窄,与磁控溅射沉积中的气体、偏压、温度、衬底等条件都密切相关。在以往的工作基础上,本论文改变氮气流量和负偏压,发现增加氮气流量,薄膜表面变得致密,结晶度改善,薄膜生长速度加快;随着负偏压的增加,薄膜表面致密平整,当负偏压为100 V左右时,c-BN开始形核并生长。此外,不同衬底表面对c-BN薄膜的形核和生长有重要影响。在相同的工艺参数下,在h-BN表面生长,得到的是100%六方相的h-BN薄膜;在Si(100)表面生长,得到的薄膜包含c-BN和h-BN;在c-BN表面生长,能够得到100%立方相的c-BN薄膜。(2)不同手段降低c-BN薄膜内应力的研究。针对实验上实施高的负偏压引起能量离子轰击会造成薄膜内应力的累积,易发生表面开裂的问题,本论文尝试采用两步法解决,即在第一步获得c-BN形核面的基础上,其他参数保持不变,第二步将负偏压降到0 V后继续生长。然而第二步得到的薄膜是纯h-BN,表明即使在c-BN形核面上再次生长,完全不加负偏压0 V也不能获得c-BN,具体的负偏压窗口仍需要进一步探索。本论文还提出采用后期高温退火的手段来释放薄膜内部累积的应力。结果显示,随着退火温度从700℃逐渐升到900℃,c-BN的红外特征峰向低波数移动,说明薄膜内应力降低,薄膜的稳定性提高。(3)退火对c-BN薄膜的半导体性质的影响。系统地研究了退火对c-BN薄膜的光学、电学性质以及整流性能的影响,UV-Vis、霍尔和I-V等测试结果表明:随着退火温度的增高,c-BN薄膜的禁带宽度变小;薄膜为p型的,800℃退火后的c-BN薄膜的迁移率更高;制备的pn结具有明显的整流特性,700℃退火后的反向漏电流更小。本论文的实验结果表明,射频磁控溅射方法中c-BN薄膜的生长与氮气流量、负偏压和衬底表面密切相关,通过上述工艺优化,能够制备出高质量、100%立方相含量的c-BN薄膜,采用后期高温退火能够进一步提升薄膜的稳定性和半导体性能。通过本论文的工作,为c-BN薄膜在高温大功率半导体器件的应用提供了技术参考。
云昊[4](2021)在《废硬质合金刀片切削性能再生及其清洁回收工艺研究》文中研究表明硬质合金刀具的用量随着制造业的飞速发展越来越大,钨、钴资源作为制造硬质合金的重要原材料储量有限且不可再生。面对硬质合金材料的大量消耗和原材料不足的矛盾,废硬质合金刀具的价值逐渐受到重视。开展硬质合金材料的循环利用研究,最大限度的利用钨、钴资源,是可持续发展的必然要求。硬质合金原材料再生周期长,回收料与新品质量差距较大,因此,废硬质合金不建议直接回收钨和钴再生利用。本文以废硬质合金刀片切削性能再生及其清洁回收工艺为研究对象,针对切削性能可再生的废硬质合金刀片,通过改制或焊接修复实现其高效、高质量利用;设计并制备梯度PCBN刀头材料用于焊接修复废硬质合金刀片,进一步提升其再生切削性能。废硬质合金刀片切削性能无法再生,通过回收基体材料中的有价物质再生利用。此时由于大部分的刀片都具有涂层,涂层与硬质合金成分差别较大,为了提高再生料的质量,必须将涂层去除,由此本文又提出了激光-水射流复合加工去除涂层工艺,提高基体的回收质量和再生料的纯净度。废硬质合金刀片的再利用应首先对其回收质量进行评估,切削性能可再生的废硬质合金刀片经过改制或焊接修复重新用于切削加工。建立BP神经网络用于改制刀片剩余寿命评估,发现BP神经网络预测模型的最大相对误差在10%以内,能够较好的评估改制刀片的剩余寿命;在合理的加工方式及工艺参数条件下,改制刀片的剩余寿命为1000-1500m,表明刀片改制是一种高效、合理利用废硬质合金刀片的方式,能够有效延长刀片的总使用寿命,提高废硬质合金刀片的回收效率。利用焊接修复使废硬质合金刀片切削性能再生,提出了切削性能再生的技术性、经济性和绿色性评价方法,并结合连续切削淬硬钢和断续切削球墨铸铁试验验证评价方法的可行性。结果表明:初步利用均质PCBN 刀头材料焊接修复废硬质合金刀片,不仅刀片的再生切削性能优于原涂层硬质合金刀片,而且降低了刀具的使用成本和回收过程的资源和能源消耗,更符合可持续利用的要求。分析均质PCBN刀头材料连续切削淬硬钢和断续切削球墨铸铁的失效形式,以提高均质PCBN材料强度、耐磨性和抗热震性为目标,将梯度结构引入PCBN材料。通过工件与刀具之间的物化相容性分析确定了梯度PCBN刀头材料体系:基体相为CBN,粘结相为TiC、Al和Co。建立了三层梯度PCBN刀头材料的宏观结构模型,利用有限元仿真分析层厚比和层间组分对残余应力分布的影响,并据此优化梯度结构。针对断续切削对刀具材料韧性的要求,通过仿真分析对比梯度和均质PCBN刀头材料的抗机械冲击能力;针对连续切削对刀具材料耐磨性的要求,通过仿真分析均质和梯度PCBN刀头材料连续切削淬硬钢的切削合力和切削热。结果表明:梯度PCBN刀头材料形成了以径向应力为主的残余应力,表层为压应力,中间层为拉应力,适当的增大层间组分梯度、减小层厚比能形成更有利的残余应力分布形式,提升梯度PCBN刀头材料的力学性能。在相同的冲击条件下,梯度PCBN刀头材料具有较好的抗机械冲击的能力;连续切削淬硬钢,梯度PCBN刀头材料切削性能较优,切削合力较小、切削温度较低。根据梯度PCBN刀头材料的设计方案,采用粉末分层铺填和高温高压烧结技术制备梯度PCBN刀头材料,通过优化梯度结构、层间组分和烧结工艺以达到力学性能最优。结果表明:层间组分为C1/C4/Cl,层厚比为0.3,烧结温度为1500℃,保温时间为10 min,梯度PCBN刀头材料的力学性能最优。与均质PCBN 刀头材料,梯度PCBN 刀头材料抗弯强度和硬度分别提高13%和14%。对烧结温度进行优化,发现材料组分中的Al和Co可以与CBN发生化学反应,烧结温度低于1450℃,反应产物为AlN和Co2B;烧结温度高于1450℃时,反应产物中的AlN逐渐向AlB2转化,Co2B含量基本不变,烧结温度达到1550℃时,Al的化合物只存在AlB2,而产物AlB2对材料力学性能存在不利影响。因此,梯度PCBN刀头材料的烧结需要合理控制烧结温度,抑制不利于材料性能产物的生成。对比裂纹在均质和梯度PCBN刀头材料层间的扩展形式,发现梯度材料的裂纹扩展在局部会产生更多的偏转,材料断裂时消耗更多的能量;对比裂纹在两种材料表层的扩展形式,发现均质材料裂纹扩展路径较为平直,裂纹扩展形式以穿晶为主;梯度材料裂纹在扩展路径中发生明显的偏转和桥联,裂纹扩展形式同时包含了穿晶和沿晶,表明梯度PCBN刀头材料的韧性较优。梯度PCBN刀头材料的强韧化机理从两个方面进行分析:梯度PCBN刀头材料层间热膨胀系数失配,在表层形成残余压应力;混合粒径烧结的梯度PCBN刀头材料,小粒径CBN颗粒具有“钉扎”强化的作用。对比均质和梯度PCBN刀头材料连续切削淬硬钢和断续切削球墨铸铁的性能,发现焊接式梯度PCBN 刀片切削性能较优,其刀具寿命相比焊接式均质PCBN刀片分别提升约31.4%和14.7%。废硬质合金刀片切削性能无法再生时,只能回收基体中的有价物质再生利用。本文重点研究废涂层硬质合金的清洁再生方法,提出了激光-水射流复合加工去除涂层工艺,建立了激光-水射流复合加工能效模型优化工艺参数,利用遗传算法求解能效模型。结合试验对比单目标与多目标工艺参数优化,发现利用能效模型优化工艺参数是在保证加工效率的前提下实现了能耗的最小化。对比高温氧化+球磨的传统涂层去除工艺,激光-水射流复合加工去除涂层精度较高,对基体的损伤较小,能够完全去除涂层,达到了基体材料清洁、高质量回收的目的;而高温氧化+球磨去除涂层对基体的损伤较大,损失了部分有价物质,并且存在涂层残留,基体回收质量较低。
蔡立超[5](2021)在《优质粗颗粒立方氮化硼单晶的合成工艺与机理研究》文中认为立方氮化硼(Cubic Boron Nitride,简称c-BN)单晶的硬度仅次于金刚石单晶,具有良好的热稳定和抗氧化性能,并在黑色金属、高温合金和冷硬铸铁等难加工材料方面表现出优异的加工性能。优质粗颗粒c-BN单晶的应用价值更高。但是由于合成工艺研究不透彻和合成机理不明确,≥50目的优质粗颗粒c-BN单晶的制备仍较为困难。在工业上合成c-BN单晶最常用的方法是高温高压触媒法,采用的原料为六方氮化硼(Hexagonal Boron Nitride,简称h-BN)。探索c-BN单晶/触媒层界面物相的高温高压反应机理对合成优质粗颗粒c-BN单晶具有重要的理论指导意义。本文在国产六面顶合成压机上系统进行了 c-BN单晶的高温高压合成实验研究,批量获得了≥50目的优质粗颗粒c-BN单晶,并基于Li3N+h-BN体系对优质粗颗粒c-BN单晶合成机理进行了物理表征和理论计算,为工业化生产奠定了坚实的应用基础。本文利用扫描电镜和原子力显微镜观察了 c-BN单晶/触媒层的组织形貌;利用X射线衍射分析了 c-BN单晶外围触媒层中的物相组成;利用高分辨透射电镜分析了触媒层的微区形貌及物相;使用俄歇电子能谱分析了触媒层中B、N原子的电子结构及其分布规律;利用第一性原理计算了 h-BN/c-BN的相变共存点和Li3BN2的相变点,并计算了各相的表面能。综合物理表征和理论计算结果,揭示了优质粗颗粒c-BN单晶的合成机理。基于前期的工艺实验和机理研究,对原材料的指标进行了进一步优化,有效控制了高温高压的触媒组织,采用新的优化合成工艺批量合成出了≥50目的优质粗颗粒c-BN单晶。通过不同触媒体系的对比实验结果表明,Li3N+h-BN体系合成出的c-BN单晶转化率最高,单晶颗粒的粒度最粗,晶体形状相对最好。因此,Li3N+h-BN体系最适于合成优质粗颗粒c-BN单晶。基于Ca3N2+h-BN体系合成出的c-BN单晶,产量和转化率较低,粒度较细,晶体表面存在结晶缺陷。采用Mg3N2+h-BN体系合成出的c-BN单晶,产量和转化率最低,粒度最细,晶体生长不完善。本文通过优化对比实验研究,确定选择Li3N+h-BN体系作为重点研究对象,针对优质粗颗粒c-BN单晶的合成工艺开展了进一步的优化实验研究。通过对Li3N+h-BN体系进行系统的综合实验,确定出优化的合成工艺为:粒度为140/200目的Li3N作为触媒(Li3N添加量为10wt%),100/120目的c-BN微粉作为籽晶(籽晶添加量为4wt%),余量为h-BN;按照缓慢升压、功率平稳分布以及15min加热时间的高温高压合成工艺曲线(其中合成功率为4890W,合成压力为95MPa),合成出的30/50目c-BN单晶占比可达56.8%。c-BN单晶的晶体完整度高、晶面平整、结晶质量好。合成出的优质粗颗粒c-BN单晶的强韧性测试结果表明,其静压强度可达48N,冲击韧性可达49%,强韧性指标均超过国家标准。根据“淬火”后的c-BN单晶及其触媒层表征分析结果能够发现,针对优质的粗颗粒c-BN单晶而言,其裸露面主要是(110)晶面,有些单晶的表面会呈现出多种形态特征,包括杂质颗粒、片层结构、三角孔洞以及大台阶结构。c-BN单晶的生长主要有二维形核生长及螺型位错生长方式。在触媒层样品当中所具备的物相结构包括h-BN、Li3BN2以及c-BN等,此外还有小部分杂质,没有观察到Li3N。通过针对不同触媒层微区进行观察可知,触媒层中存在结晶度较好的h-BN结构、结晶度较差的立方相BN结构、无定型态的BN结构以及无定型态BN结构中的纳米级立方BN结构。对比触媒层各层的AES(俄歇电子能谱)图谱可知,触媒层各层当中的AES图谱都会有B、N原子之下的sp2与sp3杂化态谱峰。而触媒层里面的B、N原子对应sp3杂化态之峰强会呈现出由外至内依次加强的特征,至于B、N原子对应的sp2杂化态之峰强则是呈现出由外至内依次趋弱的特征。据此能够确定,触媒层自外至内,立方相BN结构的含量越来越多。采用基于利用第一性原理的计算方法对触媒层中的主要物相进行了热力学计算。相图结果显示,h-BN转化成c-BN之相变共存点对应位置的温度与压强都比会Li3BN2出现相变的位置低。Li3BN2在整个合成过程中会稳定存在。c-BN的(110)晶面具有最低的表面能,因而优质粗颗粒c-BN单晶的裸露面应以(110)面为主,这也与形貌观察的结果相吻合。Li3BN2的(100)晶面具有最高的表面能,能够成为体系中其它相的微小基元聚集的基底。结合物理表征和理论计算结果,可以为分析优质粗颗粒c-BN单晶的生长机理和Li3BN2在高温高压下促进h-BN向c-BN转变的理论模型提供重要的实验依据及理论支撑。熔融态Li3BN2的(BN2)3-和Li+会破坏h-BN层与层之间的范德华键,使h-BN分解为更小的BN团簇,这些BN团簇具有低聚合度。Li+通过得失一个电子的方式,使B、N原子间之间实现电子转移,使BN团簇转变为具有sp3杂化态的c-BN生长单元。在Li3BN2的作用下,h-BN不断转变成c-BN生长单元,并向籽晶表面不断堆积,促使晶体持续生长。Li3BN2的(100)面有利于c-BN生长基元的聚集,加快生长基元向籽晶表面堆积的速度。基于c-BN单晶的合成机理分析,粒度更细的h-BN与触媒的接触面积更大而且被分解为BN团簇的速度更快,更适合用于优质粗颗粒c-BN单晶合成。将原材料h-BN的粒度细化,粒度中位径D50由7~9μm调整为2~4μm,并按照进一步优化的合成工艺进行了 c-BN单晶的高温高压合成实验,批量得到了强度指标更好的粗颗粒c-BN单晶。c-BN单晶静压强度达到50N,冲击韧性达到51.5%。表征结果表明,c-BN单晶外围管状触媒组织与前期实验得到的管状触媒组织基本相同,实现了触媒组织的有效控制和得到了新的优化合成工艺,为优质粗颗粒c-BN单晶的工业化生产提供了重要的实验基础和理论依据。
魏伟[6](2021)在《铁基粉末冶金零件孔隙特性与车削刀具研究》文中提出粉末冶金是近净成型工艺,其特点之一是可少、无切削,但是目前技术条件下,通过粉末冶金工艺制得的零件还无法达到直接使用的目的,因此还需进行少量的机械加工,然而其切削加工一直是企业里生产加工的难题,实际加工过程中刀具出现的问题层出不穷。铁基粉末冶金零件在切削加工过程中往往造成刀具快速磨损的问题,给企业里生产加工带来较大影响。为了深入分析加工过程中刀具快速发生磨损的主要原因,以及为铁基粉末冶金零件的切削加工选出合适的刀)具,解决加工中因刀具快速磨损导致换刀)不及时造成的资源浪费和经济损失,对铁基粉末冶金零件的材料特性和切削加工性能进行分析与研究。首先,从铁基粉末冶金零件的制造工艺入手,分析其在切削过程中造成刀具快速磨损的原因。发现粉末颗粒在压制成型过程中,零件坯块形成了不均匀分布的孔隙结构,这些孔隙结构经过烧结完成后依然存在,使得刀具在切削加工时受到持续的间断性载荷冲击,而且空气是热的不良导体,孔隙内部的空气使得切削系统的热量较难散出,从而造成刀具出现一系列快速磨损的现象。其次,理论分析后得知,铁基粉末冶金零件较难加工的主要原因是孔隙结构的存在,故对铁基粉末冶金零件内部的孔隙特性进行分析。推导出孔隙结构存在条件下,切削过程中刀尖圆弧与孔隙圆弧碰撞下切削模型的建立;通过有限元分析与实验相结合,分析得出铁基粉末冶金零件的加工性能不同于传统冶金零件的加工,因其内部孔隙结构造成切削过程刀具受到频繁冲击、切削系统热量不易散出等现象,对刀具伤害较大;根据铁基粉末冶金内部孔隙特性选取不同材料切削刀具,经过仿真和实验分析最终选出用于加工铁基粉末冶金零件(同步器锥环)的理想刀具材料和切削参数。最后,对所选刀具进行可靠性实验和分析,确保其加工铁基粉末冶金零件的可靠性;对切削加工后刀具的磨损形式进行分析,并根据刀具磨损机理建立定量刀具磨损模型,预测刀具随切削时间的磨损规律;根据企业实际生产加工情况,对换刀操作进行合理规划,对企业里的生产加工具有一定指导作用。基于理论分析后,发现造成其较难加工的主要原因是内部孔隙结构的存在,研究了铁基粉末冶金零件内部孔隙特性及其切削加工过程中给刀具带来的影响,通过理论分析、仿真计算和实验三者相结合,分析了孔隙结构对切削加工的影响以及对铁基粉末冶金零件切削刀具的优选。
陈朝然[7](2021)在《坚硬地层钻探用复合超硬材料(PDC)研制及性能研究》文中研究表明近年来,随着石油勘探开发的不断深入,浅层、易开发油气资源越来越少,钻探工作已由浅层、中深层向深部发展。同时,深部油气资源、地热资源、固体矿产资源的勘探开发对钻探技术提出了更高要求。为了解决深部地层岩石坚硬、研磨性强、高温、高压等复杂条件对高效、长寿命钻头的要求,急需研制开发综合性能优异的钻头材料。由于聚晶金刚石复合片(PDC)钻头硬岩的普遍性,高性能PDC材料的研发成为国内外的热点领域。研究发现,在坚硬、强研磨性地层中,影响金刚石复合片钻头使用性能的主要因素是高接触压力和岩石的高研磨性。上述因素将导致PDC的聚晶金刚石层与岩石接触面的摩擦温度过高,使金刚石聚晶层强度降低、磨损加快,从而导致金刚石复合片钻头的使用寿命降低。为解决上述难题,除了需要针对不同地层优化PDC钻头的结构及钻井参数外,还需研制具有高强度、高耐磨性和高热稳定性的聚晶金刚石复合片,并对PDC性能提升方法和机理开展理论研究。这对于延长钻头的使用寿命、提高钻进效率、扩大PDC钻头的应用范围,具有极其重要的意义。为了提高PDC的力学性能和热稳定性,可以从超硬材料的材料体系、界面结构设计、制备工艺等多个角度研究,包括分析超硬材料微观结构与成品宏观物性关系,分析粘结剂含量、粒径等对超硬材料宏观物性影响,分析金刚石微粉粒径、镀层特性、空间形态对超硬材料宏观物性影响,分析超硬材料配方研究及界面结构优化设计等。石墨烯自从被发现以来,由于其优异的力学和机械性能,使其可以作为复合材料理想的增强体。但是,目前对于石墨烯作为增强体的复合材料的研究主要集中在聚合物基和陶瓷基复合材料,对聚晶金刚石复合材料研究的较少,一些问题还未得到解决。金刚石拥有各种优异的物理力学性能,但常压下的热稳定性较差。立方氮化硼(c BN)拥有优良的热稳定性,其耐热温度在空气中可达1100℃左右,且同时拥有较高的硬度、大的弹性模量、断裂韧度。金刚石和氮化硼在结构晶格中的亲和力和共价键特性,使得金刚石和立方氮化硼可以形成“合金”,从而获取力学性能和热稳定性能优良的复合材料。碳氮化钛(Ti CN)结合了Ti C和Ti N的优点,同时具有高熔点、高硬度,而且Ti CN的热膨胀系数与c BN更匹配,常被用作为高温高压下烧结制备聚晶立方氮化硼(Pc BN)的粘结剂,以增加材料的抗弯强度和断裂韧性,从而获得具有较高红硬性和较低摩擦系数的Pc BN。本文针对花岗岩等坚硬地层岩石的钻进难题,研制具有高强度、高耐磨性和高热稳定性的聚晶金刚石复合片。通过在原材料中添加适量的石墨烯、立方氮化硼、碳氮化钛,利用国产六面顶压机,采用高温高压烧结法制备了高耐磨、高导电、高耐热、强度高的PDC复合片,并对PDC性能提升的机理开展了理论研究。此外,对不同界面结构的PDC的温度场、应力场进行了有限元数值模拟,结合室内钻进实验,提升了钻探用PDC钻头钻进硬岩的适用性,这对硬岩地层钻进用PDC钻头的推广应用具有重要的理论意义及应用价值。论文主要的研究工作和相关结论如下:(1)在国产六面顶压机下的高温高压条件下(5-6.5GPa,1300-1700°C),成功制备了尺寸为13mm及30mm的聚晶金刚石复合片。石墨烯强化烧结的复合片为PDC-Graphene复合片,立方氮化硼强化烧结的复合片为TDBN系列复合片,碳氮化钛作为粘结剂制备的PDC为TDBN-Ti CN复合片,制备的PDC性能均可满足硬岩钻探的需要。(2)PDC-Graphene系列复合片中,适量的石墨烯可在金刚石表面形成润滑保护膜,在高压条件下降低金刚石颗粒间的摩擦阻力,促进碎化金刚石空隙的填充,提升粘结剂的均匀分布,从而使聚晶金刚石层中形成更为致密、均匀的结构,与不添加石墨烯制备的PDC相比,添加石墨烯制备的PDC-Graphene导电性和导热性以及机械性能均有一定程度的提升。(3)TDBN系列复合片与传统的PDC相比,TDBN系列复合片中金刚石在Co粘结剂作用下溶解析出,同时也伴随着表面钛膜的脱层并与c BN发生反应,生成热稳定性及耐磨性好的新陶瓷相,如Ti B2,Ti N。一方面不会影响金刚石颗粒之间形成D-D键合,另一方面反应产生的陶瓷相将填充在金刚石空隙间的金刚石通过键合连接在一起,从而使得合成的PDC复合片致密性、耐磨性。(4)TDBN-Ti CN系列复合片中,硬质合金基体中的Co渗入金刚石层中,和粘结剂Ti CN形成金属和陶瓷粘结剂体系。它可以促进立方氮化硼颗粒在金刚石晶界处形成Pc BN,并促进TDBN-Ti CN系列PDC同时具有PCD和Pc BN的综合性能。(5)对PDC硬质合金基体的非平面结构进行了更改设计,并开展了有限元数值模拟分析。采用Abaqus有限元数值模拟软件对新性非平面界面结构PDC的残余应力进行了分析,结果表明均匀分布的矩形凸起,起到了有效的分散应力的作用,显着减少了高温高压烧结后PDC内部的残余应力。
张涛[8](2021)在《机械活化制备cBN及低压冷喷涂复合涂层摩擦学性能研究》文中研究指明磨损是机械损伤和失效的主要形式之一,利用低压冷喷涂技术对磨损零部件进行修复,可有效延长磨损件的使用寿命。低压冷喷涂技术具有设备体积小、携带方便,工艺简易、低能耗等优点,在施工现场修复大型设备的磨损件具有极大的优势。镍基涂层因良好的耐磨性和耐蚀性,广泛应用于泥浆泵关键部件表面。但纯镍涂层硬度低,难以满足泥浆泵服役的高载荷与腐蚀环境交互作用的严酷工况,通过结构设计将金属的高塑韧性与陶瓷颗粒的高硬度相结合是改善纯镍涂层综合性能的有效手段之一,而且硬质颗粒的加入能够有效提高低压喷涂涂层的沉积率和致密度。本文采用低压冷喷涂技术制备采Ni-Al2O3、Ni-ZrO2和Ni-cBN等镍基金属陶瓷复合涂层,通过硬度和室温干摩擦实验研究陶瓷硬质颗粒对涂层耐磨性能的影响。并在常温常压下,以六方氮化硼(h BN)为原料,采用机械活化的方法制备立方氮化硼(cBN),研究了时间和转速对形貌、相结构、晶粒尺寸等微观结构及转化率的影响。主要研究结果如下:陶瓷颗粒的加入可明显改善Ni基金属涂层的综合性能,且添加陶瓷颗粒在涂层中的沉积尺寸直接影响低压冷喷涂涂层致密度。添加9-33 vol.%的Al2O3、ZrO2陶瓷颗粒可使Ni基金属陶瓷复合涂层硬度最高分别达190.54 Hv0.1、198.46Hv0.1。在添加范围内,复合涂层硬度随Al2O3含量的增加呈现先增后减的趋势,而ZrO2与之相反。Al2O3、ZrO2、cBN陶瓷颗粒的加入亦有效提升Ni基金属陶瓷复合涂层的摩擦学性能。添加23 vol.%陶瓷颗粒,Ni-Al2O3复合涂层磨损率为3.18×10-5 mm3/(Nm),Ni基金属陶瓷复合涂层的摩擦学性能随颗粒Al2O3添加量与添加ZrO2颗粒时呈现出相反的变化规律。添加cBN陶瓷颗粒可使Ni基金属陶瓷复合涂层硬度最高达235.03 Hv0.1,较Ni-Al2O3、Ni-ZrO2复合涂层提升23.35%和18.43%。在添加范围内,复合涂层硬度随cBN量的增加呈现先增后减的趋势。添加23 vol.%cBN颗粒,复合涂层磨损率低至4.44×10-6 mm3/(Nm),较Ni-Al2O3、Ni-ZrO2复合涂层分别降低了86.04%和84.42%。Ni-cBN复合涂层的摩擦学性能随颗粒cBN添加量呈现先减后增的趋势。利用MSK-PCV-300行星式球磨机在转速1200 r/min、球料比为10:1、真空条件下实现了h BN到cBN的转变,且实现相变的关键因素是转速,时间仅能促进相变。随着机械活化时间的增加,h BN的晶粒尺寸减小,无序度增大,转变率升高,在1200 rpm条件下机械活化60 min达到15.6%。机械活化后产生的B2O3随机械活化时间的增长呈现先增后减的趋势且影响转变率。
李启泉,王旭,张旺玺,崔卫民[9](2021)在《高压高温烧结PCBN的工艺参数及其切削性能研究》文中认为聚晶立方氮化硼有着优异的理化性能,是切削刀具的理想材料。通过高压高温烧结制造工艺,探究PCBN烧结工艺中温度与压力对其性能的影响,并将制备的PCBN刀具进行GCr15淬火钢切削实验。结果表明:压力在4.5~5.5 GPa范围内,PCBN的硬度和抗弯强度随着压力的升高而增加;烧结温度的升高使PCBN的硬度和抗弯强度在前期增加显着,当烧结温度到一定值时,PCBN的硬度和抗弯强度增加幅度平缓;合成温度和压力二者都低的条件下制备的PCBN,切削实验中切削路程较短,且刀具易崩刃失效。
张旺玺,梁宝岩,李启泉[10](2021)在《超硬材料合成方法、结构性能、应用及发展现状》文中认为为了对超硬材料有更深入的了解,对以金刚石和立方氮化硼为主的超硬材料的合成方法、发展历程、结构与性能及应用领域进行了综述。金刚石的合成方法主要有静压触媒高压高温法、化学气相沉积法、动压爆炸法或爆轰法。经过几十年的发展,我国超硬材料制造技术和装备已经处于国际先进水平。超硬材料除了硬度高之外,还有许多优良的物理力学和化学性能,广泛应用于磨具、刀具、锯切、钻进等超硬材料工具和新型功能材料。
二、金刚石和立方氮化硼的烧结(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、金刚石和立方氮化硼的烧结(论文提纲范文)
(2)六方氮化硼直接转化合成多晶立方氮化硼的研究(论文提纲范文)
1 试验过程 |
2 结果分析与讨论 |
2.1 X射线衍射分析 |
2.2 微观形貌与结构分析 |
2.3 维氏硬度测量及分析 |
3 结论 |
(3)高质量立方氮化硼薄膜的射频磁控溅射制备及其半导体性能探索(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 立方氮化硼的简介 |
1.1.1 立方氮化硼的性质和应用 |
1.1.2 立方氮化硼薄膜的制备方法 |
1.2 立方氮化硼的研究背景 |
1.3 论文的选题依据和主要内容 |
第2章 立方氮化硼薄膜的制备方法和表征手段 |
2.1 立方氮化硼薄膜的制备 |
2.1.1 制备方法 |
2.1.2 实验过程 |
2.1.3 实验参数 |
2.2 立方氮化硼薄膜的表征方法 |
2.2.1 扫描电子显微镜(SEM) |
2.2.2 高分辨率透射电子显微镜(HRTEM) |
2.2.3 傅里叶变换红外光谱(FTIR) |
2.2.4 拉曼光谱(Raman) |
2.2.5 紫外可见吸收光谱(UV-Vis) |
2.3 小结 |
第3章 立方氮化硼薄膜的生长 |
3.1 氮气流量对生长氮化硼薄膜的影响 |
3.1.1 SEM表征 |
3.1.2 FTIR光谱 |
3.2 负偏压对生长立方氮化硼的影响 |
3.2.1 SEM表征 |
3.2.2 FTIR光谱 |
3.2.3 Raman光谱 |
3.2.4 UV-Vis光谱 |
3.3 不同衬底表面对生长立方氮化硼薄膜的影响 |
3.3.1 实验过程 |
3.3.2 FTIR光谱 |
3.3.3 Raman光谱 |
3.4 小结 |
第4章 立方氮化硼薄膜应力释放的研究 |
4.1 探索两步法对立方氮化硼薄膜的影响 |
4.1.1 实验步骤 |
4.1.2 SEM表征 |
4.1.3 FTIR光谱 |
4.2 探索退火对立方氮化硼薄膜的影响 |
4.2.1 实验步骤 |
4.2.2 SEM和 TEM表征 |
4.2.3 FTIR光谱 |
4.3 小结 |
第5章 立方氮化硼薄膜的半导体性能研究 |
5.1 UV-Vis光谱 |
5.2 霍尔测试 |
5.3 I-V测试 |
5.4 小结 |
第6章 总结与展望 |
参考文献 |
作者简介及科研成果 |
致谢 |
(4)废硬质合金刀片切削性能再生及其清洁回收工艺研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 废硬质合金刀片回收利用的研究现状 |
1.1.1 废硬质合金刀片切削性能再生的研究现状 |
1.1.2 废硬质合金刀片再生利用的研究现状 |
1.2 焊接式刀片制备的研究现状 |
1.3 立方氮化硼材料制备及其应用的研究现状 |
1.3.1 立方氮化硼材料制备的研究现状 |
1.3.2 PCBN刀具应用的研究现状 |
1.4 梯度功能刀具材料制备及其应用的研究现状 |
1.5 废硬质合金刀片回收利用存在的问题 |
1.6 本文的研究目的、意义及主要研究内容 |
1.6.1 本文的研究目的和意义 |
1.6.2 本文的主要研究内容 |
第2章 废硬质合金刀片再生切削性能研究 |
2.1 基于回收质量的废硬质合金刀片再利用方式分析 |
2.2 改制刀片剩余寿命评估 |
2.2.1 改制刀片剩余寿命评估的BP神经网络模型 |
2.2.2 剩余寿命评估模型验证 |
2.3 基于高材料利用率的废硬质合金刀片焊接修复工艺设计 |
2.3.1 废硬质合金刀片焊接修复工艺设计 |
2.3.1.1 PCBN复合片修复废硬质合金刀片工艺设计 |
2.3.1.2 PCBN整体材料修复废硬质合金刀片工艺设计 |
2.3.2 硬质合金真空钎焊PCBN工艺设计 |
2.4 废硬质合金刀片切削性能再生评价方法 |
2.4.1 评价指标的确定 |
2.4.2 模糊物元法概述 |
2.5 废硬质合金刀片切削性能再生评价方法验证 |
2.5.1 基于模糊物元法的废硬质合金刀片再生切削性能综合评价 |
2.5.1.1 连续切削淬硬钢试验条件 |
2.5.1.2 连续切削淬硬钢废硬质合金刀片再生切削性能综合评价 |
2.5.1.3 断续切削球墨铸铁试验条件 |
2.5.1.4 断续削球墨铸铁废硬质合金刀片再生切削性能综合评价 |
2.5.2 废硬质合金刀片切削性能再生经济性评价 |
2.5.3 废硬质合金刀片切削性能再生绿色性评价 |
2.6 涂层硬质合金刀片和焊接式均质PCBN刀片失效机理分析 |
2.6.1 连续切削淬硬钢刀片失效机理 |
2.6.2 断续切削球墨铸铁刀片失效机理 |
2.7 本章小结 |
第3章 面向废硬质合金刀体的焊接式梯度PCBN刀头材料设计 |
3.1 梯度PCBN刀头材料体系的确定及物化相容性分析 |
3.1.1 梯度PCBN刀头材料体系确定 |
3.1.2 物理相容性分析 |
3.1.3 化学相容性分析 |
3.2 梯度PCBN刀头材料组分与结构设计 |
3.2.1 梯度PCBN刀头材料组分配比设计 |
3.2.2 梯度PCBN刀头材料结构设计 |
3.3 基于有限元仿真的梯度PCBN刀头材料设计 |
3.3.1 制备梯度PCBN 刀头材料的均质PCBN材料物性参数确定 |
3.3.2 梯度PCBN刀头材料的残余应力仿真分析 |
3.3.3 梯度PCBN刀头材料抗机械冲击性能仿真分析 |
3.3.4 梯度PCBN刀头材料连续切削性能仿真分析 |
3.4 本章小结 |
第4章 废硬质合金刀体焊梯度PCBN刀头材料制备及切削性能研究 |
4.1 梯度PCBN刀头材料复合粉体制备及烧结工艺制定 |
4.2 力学性能与微观结构检测方法 |
4.3 梯度PCBN刀头材料层厚比优化 |
4.4 梯度PCBN刀头材料烧结工艺优化 |
4.4.1 烧结温度优化 |
4.4.2 保温时间优化 |
4.5 梯度PCBN刀头材料层间组分优化 |
4.6 梯度PCBN刀头材料的强韧化机理 |
4.7 梯度PCBN刀头材料连续切削淬硬钢性能研究 |
4.7.1 试验条件 |
4.7.2 刀片寿命 |
4.7.3 表面粗糙度 |
4.7.4 切削合力 |
4.7.5 磨损特征及磨损机理 |
4.8 梯度PCBN刀头材料断续切削球墨铸铁性能研究 |
4.8.1 试验条件 |
4.8.2 刀具寿命 |
4.8.3 切削合力 |
4.8.4 表面粗糙度 |
4.8.5 磨损特征及磨损机理 |
4.9 本章小结 |
第5章 废涂层硬质合金刀片清洁回收工艺研究 |
5.1 激光-水射流复合加工系统 |
5.2 激光-水射流复合加工去除涂层能效模型建立 |
5.2.1 激光-水射流复合加工涂层去除比能耗模型 |
5.2.2 激光-水射流复合加工涂层去除效率模型 |
5.2.3 激光-水射流复合加工涂层去除能效模型 |
5.3 基于试验的激光-水射流复合加工去除涂层工艺参数优化 |
5.3.1 能效模型参数确定 |
5.3.2 单目标与多目标工艺参数优化 |
5.4 能效模型验证 |
5.5 激光-水射流复合加工与高温氧化+球磨去除涂层机理及应用分析 |
5.5.1 激光-水射流复合加工去除涂层机理分析 |
5.5.2 激光-水射流复合加工去除涂层应用分析 |
5.5.3 高温氧化+球磨去除涂层机理分析 |
5.5.4 高温氧化+球磨去除涂层应用分析 |
5.6 本章小结 |
结论与展望 |
论文创新点摘要 |
参考文献 |
攻读博士学位期间取得的科研成果及获得的奖励 |
致谢 |
学位论文评阅及答辩情况表 |
(5)优质粗颗粒立方氮化硼单晶的合成工艺与机理研究(论文提纲范文)
摘要 |
ABSTRACT |
符号说明 |
第1章 绪论 |
1.1 引言 |
1.2 氮化硼的晶体结构 |
1.3 高温高压法合成粗颗粒c-BN单晶的研究现状 |
1.4 c-BN单晶合成机理的国内外研究现状 |
1.5 c-BN单晶触媒层组织结构的表征研究 |
1.5.1 c-BN单晶触媒层组织形貌和物相结构研究 |
1.5.2 c-BN单晶/触媒层界面的电子结构研究 |
1.6 第一性原理研究c-BN单晶合成机理的现状 |
1.7 本文主要研究内容 |
第2章 实验、表征与理论计算方法 |
2.1 高温高压合成实验 |
2.1.1 合成组装块的尺寸 |
2.1.2 合成组装块的制备 |
2.2 c-BN单晶触媒层组织形貌与结构表征 |
2.2.1 c-BN单晶/触媒层界面的SEM形貌表征 |
2.2.2 触媒层物相结构的XRD表征 |
2.2.3 触媒层物相结构的HRTEM表征 |
2.2.4 c-BN单晶表面的AFM表征 |
2.2.5 触媒层结构的AES表征 |
2.3 第一性原理计算方法 |
2.3.1 密度泛函理论 |
2.3.2 赝势平面波法 |
2.3.3 VASP软件包 |
2.4 c-BN单晶的力学性能测试 |
第3章 不同触媒合成粗颗粒c-BN单晶的对比实验 |
3.1 Li_3N触媒合成粗颗粒c-BN单晶 |
3.1.1 Li_3N+h-BN体系中合成功率对c-BN合成效果的影响 |
3.1.2 Li_3N+h-BN体系中合成压力对c-BN合成效果的影响 |
3.2 Ca_3N_2触媒合成粗颗粒c-BN单晶 |
3.2.1 Ca_3N_2+h-BN体系中合成功率对c-BN合成效果的影响 |
3.2.2 Ca_3N_2+h-BN体系中合成压力对c-BN合成效果的影响 |
3.3 Mg_3N_2触媒合成粗颗粒c-BN单晶 |
3.3.1 Mg_3N_2+h-BN体系中合成功率c-BN合成效果的影响 |
3.3.2 Mg_3N_2+h-BN体系中合成压力对c-BN合成效果的影响 |
3.4 三种触媒合成粗颗粒c-BN单晶的形貌对比 |
3.5 本章小结 |
第4章 Li_3N触媒合成粗颗粒c-BN单晶的工艺优化 |
4.1 Li_3N触媒添加量、粒度对合成效果的影响 |
4.1.1 Li_3N添加量对合成效果的影响 |
4.1.2 Li_3N粒度对合成效果的影响 |
4.2 高温高压合成工艺曲线的优化 |
4.2.1 分段升压与慢升压工艺曲线的对比优化 |
4.2.2 两种不同加热工艺曲线的对比 |
4.2.3 加热时间对粗颗粒c-BN单晶合成的影响 |
4.3 添加c-BN籽晶对合成粗颗粒c-BN单晶的影响 |
4.3.1 c-BN籽晶添加量的影响 |
4.3.2 c-BN籽晶粒度的影响 |
4.4 本章小结 |
第5章 c-BN单晶/触媒层界面形貌分析及组织结构表征 |
5.1 c-BN单晶/触媒界面的组织形貌 |
5.2 c-BN单晶的AFM观测分析 |
5.3 c-BN单晶触媒层物相结构表征 |
5.3.1 c-BN单晶触媒层物相结构的XRD分析 |
5.3.2 c-BN单晶触媒层物相结构的HRTEM分析 |
5.4 c-BN单晶触媒层的AES表征 |
5.4.1 c-BN单晶触媒层的AES谱 |
5.4.2 c-BN单晶触媒层B、N原子的AES谱 |
5.5 本章小结 |
第6章 触媒层主要物相表面能及相关相图的计算 |
6.1 晶格常数的计算 |
6.2 第一性原理对表面能的计算 |
6.3 h-BN/c-BN相图的计算 |
6.3.1 h-BN、c-BN和Li3BN2的态密度 |
6.3.2 h-BN/c-BN之间的物相共存点 |
6.3.3 h-BN/c-BN相转变的p-T图 |
6.3.4 Li3BN2的相转变点 |
6.4 本章小结 |
第7章 粗颗粒c-BN单晶合成机理分析及触媒组织控制 |
7.1 粗颗粒c-BN单晶高温高压合成机理分析 |
7.1.1 Li3BN2催化h-BN相变的理论模型 |
7.1.2 c-BN单晶的生长机理 |
7.1.3 Li_3BN_2的催化机理 |
7.2 高温高压触媒组织与粗颗粒c-BN单晶合成效果的关系 |
7.2.1 粗颗粒c-BN单晶合成效果与触媒层物相组成的关系 |
7.2.2 粗颗粒c-BN单晶合成效果与触媒层内物相含量的关系 |
7.2.3 粗颗粒c-BN单晶合成效果与触媒层形貌的关系 |
7.3 高温高压触媒组织控制的合成实验验证 |
7.4 本章小结 |
第8章 结论 |
创新点 |
附录 |
参考文献 |
致谢 |
攻读博士学位期间发表的学术论文 |
攻读博士学位期间参与的科研项目 |
附件 |
学位论文评阅及答辩情况表 |
(6)铁基粉末冶金零件孔隙特性与车削刀具研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 课题背景与意义 |
1.2 铁基粉末冶金零件的研究现状 |
1.2.1 粉末冶金工艺的发展 |
1.2.2 铁基粉末冶金零件材料特性研究 |
1.3 铁基粉末冶金零件的切削加工研究 |
1.3.1 铁基粉末冶金零件切削特性 |
1.3.2 铁基粉末冶金零件切削加工研究进展 |
1.4 技术路线与研究内容 |
1.4.1 技术路线 |
1.4.2 章节安排 |
2 铁基粉末冶金零件与车削刀具相关理论 |
2.1 孔隙特性与切削模型的建立 |
2.1.1 孔隙特性分析 |
2.1.2 孔隙碰撞下切削模型的建立 |
2.1.3 刀具温度模型 |
2.2 铁基粉末冶金零件和切削刀具 |
2.2.1 铁基粉末冶金零件 |
2.2.2 切削铁基粉末冶金所用刀具的种类 |
2.2.3 刀具切削参数的选用 |
2.3 Deform有限元分析软件的选择 |
2.4 本章小结 |
3 铁基粉末冶金零件车削仿真分析 |
3.1 铁基粉末冶金零件切削仿真的相关理论 |
3.1.1 铁基粉末冶金零件材料属性设定 |
3.1.2 Usui磨损模型选择与设定 |
3.1.3 仿真中网格划分设定 |
3.1.4 铁基粉末冶金零件切削过程的摩擦模型及其设定 |
3.1.5 铁基粉末冶金零件切削过程的温度设定 |
3.1.6 DEFORM车削分析处理步骤 |
3.2 铁基粉末冶金有限元模型 |
3.2.1 材料模型的建立 |
3.2.2 切削模型的建立 |
3.3 孔隙模型车削有限元仿真研究 |
3.3.1 孔隙的存在对车削影响仿真 |
3.3.2 车入孔隙方式对车削的影响 |
3.3.3 材料内部孔隙不均匀分布对车削的影响 |
3.4 不同刀具材料的有限元仿真研究 |
3.4.1 仿真方案 |
3.4.2 仿真流程与数据记录 |
3.5 不同车削参数的有限元仿真研究 |
3.5.1 仿真方案 |
3.5.2 仿真流程与数据记录 |
3.6 本章小结 |
4 铁基粉末冶金零件车削实验验证 |
4.1 实验条件 |
4.1.1 工件材料 |
4.1.2 加工机床 |
4.1.3 车削刀具 |
4.1.4 车削方式 |
4.1.5 测量设备 |
4.2 零件材料对比实验 |
4.2.1 实验方案 |
4.2.2 实验数据及分析 |
4.3 刀具材料对比实验 |
4.3.1 实验方案 |
4.3.2 实验数据及分析 |
4.4 本章小结 |
5 刀具可靠性验证及技术应用 |
5.1 刀具可靠性实验及分析 |
5.1.1 实验方案及数据记录 |
5.1.2 可靠性统计分析 |
5.2 刀具磨损机理 |
5.2.1 刀具磨损机理 |
5.2.2 磨损模型 |
5.3 技术应用 |
5.4 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
攻读硕士学位期间发表的论文及成果 |
致谢 |
(7)坚硬地层钻探用复合超硬材料(PDC)研制及性能研究(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状 |
1.2.1 聚晶金刚石复合片(PDC)的研究现状 |
1.2.2 PDC钻头技术的研究现状 |
1.2.3 PDC数值模拟仿真的研究现状 |
1.3 石墨烯强化复合材料研究现状 |
1.4 氮化硼强化复合超硬材料的研究现状 |
1.5 碳氮化钛强化复合超硬材料的研究现状 |
1.6 PDC切削齿的失效形式 |
1.7 本文研究内容 |
1.8 研究方法及技术路线 |
1.8.1 研究方法 |
1.8.2 技术路线 |
第2章 复合超硬材料PDC制备及性能测试方法 |
2.1 引言 |
2.2 原料预处理方法 |
2.2.1 金刚石微粉及硬质合金基体处理 |
2.2.2 金刚石微粉粒径测试 |
2.3 PDC试样制备方法 |
2.4 PDC复合片后处理方法 |
2.5 PDC试样样品表征方法与原理 |
2.5.1 XRD表征测试 |
2.5.2 拉曼表征测试 |
2.5.3 热重分析 |
2.5.4 PDC显微结构及形貌分析 |
2.6 PDC试样的性能测试方法 |
2.6.1 耐磨性 |
2.6.2 硬度测试 |
2.6.3 抗冲击测试 |
2.6.4 导热性分析 |
第3章 PDC的制备、表征及性能测试 |
3.1 引言 |
3.2 石墨烯强化PDC制备、表征及性能测试 |
3.2.1 实验原材料处理 |
3.2.2 烧结工艺 |
3.2.3 不同粒径金刚石微粉级配 |
3.2.4 高温高压下石墨烯表征分析 |
3.2.5 石墨烯强化PDC硬度测试 |
3.2.6 耐磨性测试 |
3.2.7 抗冲击韧性测试 |
3.2.8 SEM显微分析 |
3.2.9 XRD分析 |
3.2.10 激光拉曼光谱分析 |
3.2.11 导热性及导电性测试 |
3.3 氮化硼强化PDC的制备、表征及性能测试 |
3.3.1 实验材料及准备 |
3.3.2 力学性能测试 |
3.3.3 XRD分析 |
3.3.4 激光拉曼分析 |
3.3.5 TG-DSC热重分析 |
3.3.6 SEM分析 |
3.4 碳氮化钛强化PDC的制备、表征及性能测试 |
3.4.1 实验材料及准备 |
3.4.2 力学性能测试 |
3.4.3 XRD分析 |
3.4.4 激光拉曼分析 |
3.4.5 TG-DSC热重分析 |
3.4.6 SEM分析 |
3.5 小结 |
第4章 PDC热应力数值模拟 |
4.1 基于Abaqus的热应力分析 |
4.2 Abaqus计算PDC热应力数值模拟 |
4.3 残余应力结果分析 |
4.3.1 常规平面型PDC复合界面热传导分析 |
4.3.2 复合型PDC复合界面热传导分析 |
4.4 小结 |
第5章 PDC钻进实验及分析 |
5.1 实验方法 |
5.2 钻头结构设计与加工 |
5.3 实验结果 |
5.4 小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 创新点 |
6.3 展望 |
参考文献 |
作者简介及在学期间所取得的科研成果 |
一、作者简介 |
二、发表的学术成果 |
三、参与的科研项目 |
四、参加的学术活动 |
致谢 |
(8)机械活化制备cBN及低压冷喷涂复合涂层摩擦学性能研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 冷喷涂技术 |
1.2.1 低压冷喷涂技术原理 |
1.2.2 低压冷喷涂技术特点 |
1.2.3 影响低压冷喷涂涂层制备的因素 |
1.2.4 低压冷喷涂涂层的研究现状 |
1.3 颗粒增强镍基涂层的研究现状 |
1.4 立方氮化硼概述 |
1.4.1 立方氮化硼的结构特点 |
1.4.2 立方氮化硼的性能与应用 |
1.4.3 立方氮化硼合成方法及研究现状 |
1.5 论文研究意义及内容 |
第2章 实验与研究方法 |
2.1 实验材料 |
2.2 涂层制备 |
2.3 实验结果表征 |
2.3.1 微观组织观察物相组成分析 |
2.3.2 硬度测试 |
2.3.3 涂层摩擦学性能测试 |
第3章 低压冷喷涂Ni-Al_2O_3、Ni-ZrO_2复合涂层的摩擦学性能 |
3.1 引言 |
3.2 结果与讨论 |
3.2.1 显微结构与物相分析 |
3.2.2 复合涂层硬度 |
3.2.3 复合涂层摩擦学性能 |
3.2.4 复合涂层摩擦形貌分析 |
3.3 本章小结 |
第4章 低压冷喷涂Ni-cBN复合涂层的摩擦学性能 |
4.1 引言 |
4.2 结果与讨论 |
4.2.1 显微结构与物相分析 |
4.2.2 复合涂层硬度 |
4.2.3 复合涂层摩擦学性能 |
4.2.4 复合涂层摩擦形貌分析 |
4.3 本章小结 |
第5章 机械活化hBN制备cBN的研究 |
5.1 引言 |
5.2 结果与讨论 |
5.2.1 机械活化转速对相结构的影响 |
5.2.2 机械活化时间对形貌及晶粒尺寸的影响 |
5.2.3 机械活化时间对相结构及转变率的影响 |
5.3 本章小结 |
结论 |
参考文献 |
致谢 |
附录A 攻读硕士期间所发表的学术论文目录 |
附录B 攻读硕士期间所发表的专利目录 |
(9)高压高温烧结PCBN的工艺参数及其切削性能研究(论文提纲范文)
1 实验 |
1.1 实验原料 |
1.2 PCBN合成工艺 |
2 结果与分析 |
2.1 合成压力和温度对PCBN硬度的影响 |
2.2 合成压力和温度对PCBN抗弯强度的影响 |
2.3 合成工艺对PCBN刀具切削性能的影响 |
3 结论 |
(10)超硬材料合成方法、结构性能、应用及发展现状(论文提纲范文)
1 超硬材料主要合成方法概述 |
2 超硬材料的发展概况 |
2.1 国外超硬材料的发展概况 |
2.2 我国超硬材料发展过程概述 |
2.3 我国现在是超硬材料制造大国 |
(1)我国超硬材料的产量居世界第一。 |
(2)我国自主开发的六面顶压机装备和技术引领世界超硬材料生产领域。 |
3 超硬材料的结构与性能 |
3.1 金刚石的结构与性能 |
(1)金刚石的化学成分 |
(2)金刚石的晶体结构 |
(3)金刚石是一种碳材料 |
(4)金刚石的物理力学特性 |
(5)金刚石的化学特性 |
3.2 cBN的结构与性能 |
(1)结构 |
(2)性能 |
4 超硬材料的应用概述 |
4.1 超硬材料制品的主要品种 |
4.2 天然钻石和人造钻石 |
(1)天然钻石 |
(2)人造钻石 |
4.3 cBN的主要应用 |
5 结语与展望 |
四、金刚石和立方氮化硼的烧结(论文参考文献)
- [1]晶格缺陷对立方氮化硼热导率影响的分子动力学模拟[D]. 徐博. 哈尔滨工业大学, 2021
- [2]六方氮化硼直接转化合成多晶立方氮化硼的研究[J]. 王永凯,位星,王大鹏,魏朝阳,刘红伟,鲁翠莲,张相法. 金刚石与磨料磨具工程, 2021(03)
- [3]高质量立方氮化硼薄膜的射频磁控溅射制备及其半导体性能探索[D]. 刘彩云. 吉林大学, 2021(01)
- [4]废硬质合金刀片切削性能再生及其清洁回收工艺研究[D]. 云昊. 山东大学, 2021(11)
- [5]优质粗颗粒立方氮化硼单晶的合成工艺与机理研究[D]. 蔡立超. 山东大学, 2021(10)
- [6]铁基粉末冶金零件孔隙特性与车削刀具研究[D]. 魏伟. 西安工业大学, 2021
- [7]坚硬地层钻探用复合超硬材料(PDC)研制及性能研究[D]. 陈朝然. 吉林大学, 2021(01)
- [8]机械活化制备cBN及低压冷喷涂复合涂层摩擦学性能研究[D]. 张涛. 兰州理工大学, 2021(01)
- [9]高压高温烧结PCBN的工艺参数及其切削性能研究[J]. 李启泉,王旭,张旺玺,崔卫民. 中原工学院学报, 2021(01)
- [10]超硬材料合成方法、结构性能、应用及发展现状[J]. 张旺玺,梁宝岩,李启泉. 超硬材料工程, 2021(01)