一、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文文献综述)
DING Tiping,GAO Jianfei,TIAN Shihong,SHI Guoyu,CHEN Feng,WANG Chengyu,LUO Xurong,HAN Dan[1](2014)在《Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications》文中研究说明The chemical and isotopic characteristics of the water and suspended particulate materials(SPM) in the Yangtze River were investigated on the samples collected from 25 hydrological monitoring stations in the mainsteam and 13 hydrological monitoring stations in the major tributaries during 2003 to 2007. The water samples show a large variation in both δD( 30‰ to 112‰) and δ18O( 3.8‰ to 15.4‰) values. Both δD and δ18O values show a decrease from the river head to the Jinsha Jiang section and then increase downstream to the river mouth. It is found that the oxygen and hydrogen isotopic compositions of the Yangtze water are controlled by meteoric precipitation, evaporation, ice(and snow) melting and dam building. The Yangtze SPM concentrations show a large variation and are well corresponded to the spatial and temporal changes of flow speed, runoff and SPM supply, which are affected by the slope of the river bed, local precipitation rate, weathering intensity, erosion condition and anthropogenic activity. The Yangtze SPM consists of clay minerals, clastic silicate and carbonate minerals, heavy minerals, iron hydroxide and organic compounds. From the upper to lower reaches, the clay and clastic silicate components in SPM increase gradually, but the carbonate components decrease gradually, which may reflect changes of climate and weathering intensity in the drainage area. Compared to those of the upper crust rocks, the Yangtze SPM has lower contents of SiO2, CaO, K2 O and Na2 O and higher contents of TFe2 O3 and trace metals of Co, Ni, Cu, Zn, Pb and Cd. The ΣREE in the Yangtze SPM is also slightly higher than that of the upper crust. From the upper to lower reaches, the CaO and MgO contents in SPM decrease gradually, but the SiO2 content increases gradually, corresponding to the increase of clay minerals and decrease of the carbonates. The δ30SiSPM values( 1.1‰ to 0.3‰) of the Yangtze SPM are similar to those of the average shale, but lower than those of the granite rocks( 0.3‰ to 0.3‰), reflecting the effect of silicon isotope fractionation in silicate weathering process. The δ30SiSPM values of the Yangtze SPM show a decreasing trend from the upper to the middle and lower reaches, responding to the variation of the clay content. The major anions of the river water are HCO 3, SO 4 2, Cl, NO 3, SiO 4 4 and F and the major cations include Ca2+, Na+, Mg2+, K+ and Sr2+. The good correlation between HCO3-content and the content of Ca2+may suggest that carbonate dissolution is the dominate contributor to the total dissolved solid(TDS) of the Yangtze River. Very good correlations are also found among contents of Cl, SO4 2, Na+, Mg2+, K+and Sr2+, indicating the important contribution of evaporite dissolution to the TDS of the Yangtze River. High TDS contents are generally found in the head water, reflecting a strong effect of evaporation in the Qinghai-Tibet Plateau. A small increase of the TDS is generally observed in the river mouth, indicating the influence of tidal intrusion. The F and NO3 contents show a clear increase trend from the upstream to downstream, reflecting the contribution of pesticides and fertilizers in the Chuan Jiang section and the middle and lower reaches. The DSi shows a decrease trend from the upstream to downstream, reflecting the effect of rice and grass growth along the Chuan Jiang section and the middle and lower reaches. The dissolved Cu, Zn and Cd in the Yangtze water are all higher than those in world large rivers, reflecting the effect of intensive mining activity along the Yangtze drainage area. The Yangtze water generally shows similar REE distribution pattern to the global shale. The δ30SiDiss values of the dissolved silicon vary from 0.5‰ to 3.7‰, which is the highest among those of the rivers studied. The δ30SiDiss values of the water in the Yangtze mainsteam show an increase trend from the upper stream to downstream. Its DSi and δ30SiDiss are influenced by multiple processes, such as weathering process, phytolith growth in plants, evaporation, phytolith dissolution, growth of fresh water diatom, adsorption and desorption of aqueous monosilicic acid on iron oxide, precipitation of silcretes and formation of clays coatings in aquifers, and human activity. The δ34SSO4 values of the Yangtze water range from 1.7‰ to 9.0‰. The SO4 in the Yangtze water are mainly from the SO4 in meteoric water, the dissolved sulfate from evaporite, and oxidation of sulfide in rocks, coal and ore deposits. The sulfate reduction and precipitation process can also affect the sulfur isotope composition of the Yangtze water. The87Sr/86Sr ratios of the Yangtze water range from 0.70823 to 0.71590, with an average value of 0.71084. The87Sr/86Sr ratio and Sr concentration are primary controlled by mixing of various sources with different87Sr/86Sr ratios and Sr contents, including the limestone, evaporite and the silicate rocks. The atmospheric precipitation and anthropogenic inputs can also contribute some Sr to the river. The δ11B values of the dissolved B in the Yangtze water range from 2.0‰ to 18.3‰, which is affected by multifactors, such as silicate weathering, carbonate weathering, evaporite dissolution, atmospheric deposition, and anthropogenic inputs.
杨小菊,吴向午,周志炎[2](2014)在《若干中国银杏目化石的命名问题(英文)》文中指出中国银杏目化石中有一些不符合国际植物命名法规的名称:1)在发表新种时未明确指定模式标本的有下列名字:Antholithus yangshugouensis Zhang and Zheng,Baiera borealis Wu,Datongophyllum longipetiolatum Wang,Dukouphyllum noeggerathioides Yang,Ginkgo xiahuayuanensis Wang,Ginkgoidium crassifolium Wu and Zhou,Ginkgoidium eretmophylloidium Huang and Zhou,Ginkgoidium longifolium Huang and Zhou,Ginkgoidium truncatum Huang and Zhou,Ginkgoites rotundus Meng,Ginkgoites subadiantoides Cao,Ginkgoites tasiakouensis Wu and Li,Ginkgophyllum zhongguoensis Feng,Ginkgophytopsis fukienensis Zhu,Pseudotorellia longilancifolia Li,Sphenobaiera acubasis Chen,Sphenobaiera bifurcata Hsüand Chen,Sphenobaiera chengzihensis Zheng and Zhang,Sphenobaiera crispifolia Zheng,Sphenobaiera fujianensis Cao,Liang and Ma,Sphenobaiera micronervis Z.Wang and L.Wang,Sphenobaiera multipartita Meng and Chen,Sphenobaiera qiandianziense Zhang and Zheng和Sphenobaiera setacea Zhang;2)1996年1月1日后仅用汉语发表而未提供拉丁语或英语的特征集要和描述的名字:Antholithus ovatus Wu,Eremophyllum latifolium Meng,Ginkgo taipingensis Gong,Ginkgoites yaojiensis Sun,Sphenobaiera beipiaoensis Mi et al.,Sphenobaiera qiadamensis Zhang等也都不是合格发表的名称。囿于种种条件和篇幅所限,本文仅给出最后这六个种的英文特征集要,予以重新发表;3)Glossophyllum longifolium Yang(1978)一名已被Glossophyllum?longifolium(Salfeld)Sze and Lee(1963)先期占用,为非法的晚出同名,本文将其重新命名为Glossophyllum?yangii Yang,Wu and Zhou(nom.nov);4)Sphenobaiera huangi(Sze)Krassilov(1972)和Sphenobaiera huangii(Sze)Hsü(1954)都因没有直接而清楚地引证基名而成为不合格发表的新组合,李星学(1963)合格发表了这个新组合,即Sphenobaiera huangii(Sze)Hsüex Lee。
SONALI UMESH PRADHAN[3](2017)在《Chemical Compositions and Sr-Nd Isotopic Fingerprints of Sediments in the Selected River Systems of India and China》文中研究指明地球化学学科中Sr和Nd的放射源同位素被广泛用于研究环境样品(悬浮颗粒物(SPM)和沉积物)的化学和物理侵蚀过程。在矿物和岩石的化学风化过程中,Sr同位素不按照一定的化学计量比释放。受降雨模式差异(如热带与非热带河流)的影响,Sr在河流中的通量随时间发生变化。与之不同,Nd同位素在侵蚀、搬运、成岩等地表过程中发生明确的分馏,很好地保留了其来源信息。假定Sr和Nd的来源信息在沉积物中得以保留,可以综合使用Sr和Nd同位素研究沉积物的来源和侵蚀过程。本论文在印度夏季风(或西南季风)主导的流域(印度西部大陆边的Narmada(大河)和Netravati(陡峭的小河))和中国的长江采集了沉积物和总SPM样品,测定其酸不溶性(硅酸盐)和酸溶性组分的Sr、Nd同位素比值。同时测定了样品中常量和微量元素,用于认识上述流域中的化学风化强度及普遍存在的人为扰动。所采集的样品包括Narmada和Netravati流域三个季节(季风前,西南季风期间和季风后)的样本,长江流域多站位样本,以及长江下游徐六泾(XLJ)为期一年的时间序列观测。样品经化学和离子色谱纯化后,使用基于常规流程改进后的方法进行分析测定(第二章)。分别使用高分辨率电感耦合等离子体质谱(HR-ICP-MS)和多接收电感耦合等离子体质谱(MC-ICPMS)进行元素浓度和同位素组成的测定。研究结果表明,Narmada和Netravati流域沉积物酸溶性组分中Sr同位素比值与全球平均现代海水(0.7092)和河水(0.7119)的比值相近,因此可以代表同一自生源。简单端元混合模型计算结果表明,Narmada流域沉积物由中晚期元古代Vindhyan沉积(~30%)和第四纪时期的Deccan沉积(~70%)组成,其TDMNd年龄为中元古代到中太古代。与之对比,Netravati流域沉积物由半岛片麻岩(~30%)和花岗闪长岩(~70%)组成,其TDMNd年龄为古太古代。此外,两个流域SPM的Sr-Nd同位素组成在不同季节呈现显着的变化。在西南季风期间,Narmada流域的SPM表现出较低的放射源Sr同位素和较多的放射源εNd(0)同位素,而Netravati流域的的SPM则表现出较多的放射源Sr和较少的放射源εNd(0),这共同证明两流域的岩石组成控制了它们Sr-Nd同位素的季节性变化。西南季风和非季风期间,Narmada流域Sr和Nd的加权平均通量表现出大致相似的特征(西南季风期间:Sr 0.7155,Nd 0.5120;非季风期间:Sr 0.7143,Nd 0.5122)。相比之下,Netravati流域Sr和Nd的通量在西南季风和非季风期间差异明显(西南季风期间:Sr 0.7269,Nd 0.51136;非季风期间:Sr 0.7135,Nd 0.5112)。该对比反映了两流域不同季节间降水量、降水频率以及沉积物负荷差异所发挥的控制作用。沉积物的元素地球化学结果表明Narmada流域存在中等程度的化学风化,而在Netravati流域则存在强烈的化学风化。Narmada和Netravati流域SPM和沉积物中REE的总体分布模式表明Netravati中LREE富集程度比Narmada高。此外,Netravati沉积物中的REE构成比Narmada表现出更多的分馏特征,流域中源岩所发挥的控制作用可以证明这一点。总体而言,元素化学表明Narmada和Netravati流域受到中等程度的改造,不同的是Netravati的改造表现为少量元素的积累,这表明Narmada 比 Netravati受到更多的人为影响。长江(CJ)的同位素组成结果表明了 SPM与沉积物中Sr同位素的差异,及长江上下游间CaO浓度的差异,而前者与风化反应中矿物相的差异有关。酸可溶性和酸不溶性组分间Nd(0)值的差异很大,表明长江中推移质沉积物同位素组成的不均一,其可淋洗部分含有高143Nd/144Nd和147Sm/144Nd的矿物相。基于Sr-Nd同位素比值的研究,得到长江流域沉积物主要来自(1)周边基岩的风化产物,(2)远方输送来的基岩,(3)床载推移质(相当于当地基岩与上游岩石组分的混合物)的溶解产物。长江下游徐六泾站位为期一年的SPM样品观测到与长江上游沉积物相似的REE浓度和分馏模式,表明了源岩的影响。同位素结果显示高水位期间较低的Sr同位素比值和较高的εNd(0)值,低水位期间与之相反。该季节变化主要反映出源岩的控制,因此在高水位期间上游端元如青藏高原(TP)等的贡献较大(70.5±1.1%),低水位期间华南地区花岗岩(SCG)等下游端元对徐六泾SPM的贡献较大(64.3±4.4%)。低水位期间SCG较高的贡献表明三峡大坝建设造成下游航道的侵蚀过程,并反映在徐六泾SPM的放射性Sr和非放射性Nd信号中。根据Sr-Nd同位素信号的变化,得到长江流域的沉积物通量有59%来自上游,41%源自下游。本研究得到的SPM和沉积物的元素地球化学证明,长江上游和中游起主控作用的岩石分别是铁镁质岩屑和花岗岩。上游沉积物中风化作用信号较弱,而中下游地区则发现强风化作用。该研究证实了超基性岩对上游沉积物以及细粒度的岩屑、长石等低密度矿物对中下游沉积物的贡献。与历史报道数据对比,本研究中长江SPM和沉积物中所分析的的元素浓度具有更高的界限值,这主要是受到全球气候变化的影响。本研究选择小、中型到极大型河流,研究其风化过程,元素地球化学及Sr-Nd同位素的时间变化特征。结果表明地质、地貌和气候对侵蚀过程起到控制作用。作为扩展,本论文根据世界不同河流中发现的Sr-Nd同位素组成,整合出Sr-Nd的全球分布模式,表明河流沿途地形特征也会起到控制作用。这为未来的研究提供一个有益的方向。
邓胜徽,卢远征,樊茹,李鑫,方琳浩,刘璐[4](2012)在《中国白垩纪植物群与生物地层学》文中进行了进一步梳理早白垩世时中国可划分出北方、南方和藏南3个植物地理区。北方植物地理区可归入瓦赫拉梅耶夫的西伯利亚加拿大植物地理区,发育有热河、阜新和大砬子3个植物群。热河植物群产于辽西义县组和九佛堂组及其他相当地层,时代为早白垩世早期,以苏铁纲和松柏纲占主导地位。阜新植物群赋存于辽西的沙海组和阜新组及相当地层,以真蕨纲、银杏纲和松柏纲共同繁盛,苏铁纲和木贼目较丰富为特点。由早而晚可以进一步划分为Acanthopteris-Ginkgoco riacea组合、Ruffordia goepperti-Dryopterites组合和Ctenis lyrata-Chilinia组合,分别产于辽西的沙海组、阜新组中下部和阜新组上部。大砬子植物群产于吉林延吉盆地的大砬子组和松辽盆地的泉头组,被子植物占优势且掌鳞杉科丰富。南方植物地理区属于瓦赫拉梅耶夫的欧洲中国植物地理区的范畴,苏铁纲、鳞叶或锥叶型松柏和小羽片小而叶膜厚的真蕨类(主要是Cladophlebis)占主导地位,缺少银杏纲、真蕨纲的蚌壳蕨科及单缝孢类型等,为热带、亚热带植物群,可进一步划分为东部、西藏北部和中部3个亚区。其中,东部亚区滨邻古太平洋,以浙江、福建和山东莱阳盆地等的植物为代表,以鳞叶和锥叶型松柏与本内苏铁Ptilophyllum占优势。该亚区植物群可以进一步划分为3或4个植物组合,自早至晚包括Cupressinocladus-Pagiophyllum组合、Cladophlebis-Ptilophyllum组合、Ruffordia-Zamiophyllum组合和Suturovagina-Frenelopsis组合。西藏北部亚区邻近古特提斯洋东北岸,植物群与东部亚区的基本特点一致,但真蕨类更为繁盛,特别是海金沙科Klukia属和里白科的Gleichenites相当丰富,并有海金沙科的Scleropteris属和马通蕨科存在,裸子植物以苏铁纲为主,松柏纲相对较少,可进一步划分为两个组合。中部亚区介于上述两个亚区之间,由于气候干旱,植物群不发育,以甘肃酒泉盆地、民和盆地所产化石为代表,特点是鳞叶、锥叶型松柏类为主,掌鳞杉科较发育,其他类型罕见。藏南植物地理区属于澳大利亚植物地理区的范畴,只发现于喜玛拉雅地区。晚白垩世植物群只发现于东北、华南、西藏等地的少数地点和少数层位,研究程度较低,还不能进一步划分出植物地理区系和组合。以植物化石为主要依据,结合其他生物和非生物证据,建立了中国不同植物地理区白垩纪含植物化石的地层及相关地层的对比关系。
兰彩云,张连昌,赵太平,王长乐,李红中,周艳艳[5](2013)在《河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示》文中认为河南舞阳铁矿位于华北克拉通南缘。铁山庙式铁矿是舞阳铁矿的一部分,赋存于新太古界太华杂岩铁山庙组表壳岩中。本文根据铁山庙式铁矿中三种不同类型矿石(条带状石英-辉石-磁铁矿、块状辉石-磁铁矿、块状石英-磁铁矿)中磁铁矿的矿物成分、全岩/矿的主量元素及微量元素特征,探讨铁山庙式铁矿床的成因。磁铁矿单矿物成分分析表明,条带状石英-辉石-磁铁矿矿石中磁铁矿的FeOT含量90.6%~93.1%,平均91.8%;块状辉石-磁铁矿矿石中磁铁矿的FeOT含量90.7%~91.2%,平均91.0%;块状石英-磁铁矿矿石中磁铁矿的FeOT含量92.0%~93.0%,平均92.4%。上述平均值均与磁铁矿FeOT的理论值(93.1%)接近。三种类型矿石的其它元素如TiO2、MgO、MnO、CaO、Al2O3、Cr2O3、NiO等含量均<0.1%,无明显区别,表明该区磁铁矿为含杂质极少的纯磁铁矿,表现出沉积变质成因磁铁矿的特征。矿石中斜方辉石-单斜辉石及近矿围岩紫苏辉石-长石-石英矿物组合,表明铁山庙式矿床经受了高级变质作用,石英、磁铁矿等矿物普遍发生变质重结晶,颗粒粗大,但仍保存原有的地球化学组成。元素地球化学分析显示,三种类型矿石中SiO2、TiO2、Al2O3、P2O5的含量相近;块状辉石-磁铁矿较其它二者相对贫铁、富钙、镁,这是由于块状辉石-磁铁矿石中富含铁普通辉石和铁次透辉石所致;矿石中TiO2、Al2O3含量都极低,说明该区成岩成矿过程中未受到碎屑物质的混染。三种不同类型矿石的主量元素含量总体上都与世界典型BIF的相近。对于稀土元素,三种类型矿石均具有轻稀土亏损、重稀土富集((La/Yb)PAAS=0.29~0.995<1),La、Eu、Y的正异常(La/La*=1.10~1.89;Eu/Eu*=1.30~2.23;Y/Y*=1.47~1.84),较高的Y/Ho比值(39.7~51.3),具有现代海水及高温热液混合特征。因此,我们认为铁山庙式铁矿三种不同类型的矿石是极少受到陆源碎屑混染的化学沉积成因,虽遭受后期变质作用,但仍属BIF型铁矿。
魏运许,彭松柏,蒋幸福,彭中勤,彭练红,李志宏,周鹏,曾雄伟[6](2012)在《SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting》文中指出SHRIMP zircon U-Pb dating of the Neoproterozoic Maoping (茅坪) series (Sandouping (三斗坪) rock suite) granites exposed in the southern part of the Huangling (黄陵) anticline shows that the formation time of Sandouping biotite-hornblende tonalite intrusion, Jinpansi ( 金盘寺 ) hornblende-biotite tonalite intrusion, and Longtanping (龙潭坪) monzogranite are 863±9, 842±10, and 844±10 Ma, respectively. Their geochemical features include A/CNK=0.98-1.06, from metaluminous to weakly peraluminous, δ=1.37-1.53, Sm/Nd=0.17-0.24, and Rb N /Yb N =1.1-3.62. These indicate that the granite rocks are supersaturated SiO 2 calc-alkaline granitoids. The characteristic of Sr-Nd isotopic composition is that the values of ε Nd (t) and ε Sr (t) are -12.4 to -11.0 and 20.2-32.2, respectively. It also suggests that the material source of the granite rocks mainly originated from the crust, and they formed in a volcanic arc tectonic environment. These facts suggest that the occurrence of Neoproterozoic granitoids in the southern part of the Huangling anticline should be related to an arc environment along an active continental margin caused by southward subduction of oceanic crust beneath the northern Yangtze craton, and the formation age is not later than 863 Ma.
唐一昂,赖健清,杨牧,梅嘉靖,刘启,吴剑,谌后成,郭兰萱,胡理芳,和秋姣[7](2017)在《广东韶关市一六钨矿床流体包裹体特征及成矿作用》文中认为一六钨矿大地构造位置位于南岭成矿带中段南缘,粤北曲仁盆地西南缘,是粤北地区近年来重要的找矿勘查成果之一。矿床为典型的矽卡岩矿床,矿体赋存于上泥盆统帽子峰组矽卡岩以及NWW向钾长石-石英-白钨矿脉和云母石英脉中。通过野外观察和镜下研究,本文将成矿过程分为矽卡岩期(A)和热液期(B),矽卡岩期可以分为早期矽卡岩阶段(A1)、晚期矽卡岩阶段(A2)、钾长石英白钨矿阶段(A3),热液期可以分为云母石英脉阶段(B1)和石英碳酸盐阶段(B2)。矿区包含4种类型的包裹体:含子矿物三相包裹体(Ⅰ型)、气液两相水溶液包裹体(Ⅱ型)、CO2水溶液三相包裹体(Ⅲ型)、纯CO2包裹体(Ⅳ型),Ⅰ型包裹体仅见于A3阶段;Ⅱ型、Ⅲ型以及Ⅳ型包裹体在A3和B1阶段石英中均有发育,在A3和B1阶段白钨矿中还发育Ⅱ型包裹体。A3阶段Ⅰ型包裹体完全均一温度为162381℃,盐度为30.1%45.4%(wt%NaClequiv,下同省略),Ⅱ型包裹体完全均一温度为154363℃,盐度为1.49%11.0%,Ⅲ型包裹体完全均一温度为290390℃,盐度为2.20%6.88%;B1阶段Ⅱ型包裹体完全均一温度为152381℃,盐度为1.65%9.32%,Ⅲ型包裹体完全均一温度为281378℃,盐度为2.00%8.82%。激光拉曼探针分析表明,A3阶段和B1阶段流体中存在H2O、CO2、CH4和少量CO32-,指示流体处于还原的环境。包裹体完全均一温度—盐度关系图表明,数据点主要集中于三个区域:a区对应早期出溶成因的高盐度流体,b区反映流体发生了不混溶作用,c区反映早期高盐度流体与低盐度地下水混合特征。各区包裹体代表了岩浆期后残余原始流体不同阶段的演化产物。通过Ⅰ型包裹体计算得出的成矿压力范围为86.0415.8MPa,用Ⅱ、Ⅳ型包裹体对成矿压力进行校正得出,A3阶段成矿压力范围为86115MPa,成矿温度为176279℃;B1阶段成矿压力范围为5593 MPa,成矿温度为160228℃,估算成矿深度范围为3.624.26km。研究认为,流体在演化早期存在局部高压,流体不混溶作用要比外来流体混入更早发生,而流体混入促进了流体的不混溶作用。流体物理化学条件的改变、外来流体混入以及流体不混溶作用是引起钨矿沉淀的主要原因。
颜开,刘成林,王九一,王春连,徐海明,王春林,余小灿,孟令阳[8](2018)在《江陵凹陷南缘盐井-申津渡凹地始新统硫同位素特征及古气候和物质来源探讨》文中研究指明江陵凹陷南缘盐井-申津渡凹地的早始新世新沟嘴组发育一套钙芒硝-石盐的蒸发岩系地层。岩相学和矿物学证据显示,含盐系地层的主要盐类矿物包括石盐、钙芒硝、硬石膏,形成于常年性的盐湖环境中。钙芒硝为原生-准同生的盐类矿物。根据盐类矿物的类型和沉积特征以及典型暖相盐类矿物(原生钙芒硝)的广泛发育,推断出盐井-申津渡凹地在新沟嘴组沉积时期的古气候为暖型。钙芒硝δ34S组成为25‰33‰,高于同时期海水硫同位素(17‰19‰),可能经受过细菌改造。除此之外,晚古新世-早始新世时,盐井-申津渡凹地的硫酸盐物质也有可能来源于西部较老时期的含硫酸盐地层。
CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[9](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中指出It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.
MAO Jianren1,LI Zilong2,ZHAO Xilin1,ZHOU Jie1,YE Haimin1,and ZENG Qitao3 1 Nanjing Institute of Mineral Resources,Nanjing 210016,China 2 Department of Earth Sciences,Zhejiang University,Hangzhou 310027,China 3 Department of Earth Sciences,Nanjing University,Nanjing 210093,China[10](2010)在《Geochemical characteristics,cooling history and mineralization significance of Zhangtiantang pluton in South Jiangxi Province,P.R. China》文中研究表明The zircon SHRIMP dating of the Zhangtiantang granite gave an age of 159±7 Ma.,which shows that the granite was produced at the early Late Jurassic.The Ar-Ar plateau ages of biotite and K-feldspar from the Zhangtiantang pluton are 153.2±1.1 Ma and 135.8±1.2 Ma,respectively.The Ar-Ar anti-isochrone ages of biotite and K-feldspar are 152.5±1.7Ma and 135.4±2.7Ma,respectively.The ages represent the isotopic closure ages of minerals in the pluton.The Zhangtiantang granites are regarded as peraluminous crust-derived type granites to possess the typical geochemical characteristics of calc-alkaline rocks on continental margin,with enriched Si,K,Al(average value of A/CNK as 1.18),HREE,Rb,U,and Th,heavily depleted V,Cr,Co,Ni,Ti,Nb-Ta,Zr,Sr,P,and Ba,strongly negative Eu and common corundum normative(average value of C as 1.84).The εNd(t) values of the Zhangtiantang granite are-5.84 to-7.79,and t2DM values are 1.69 to 1.83 Ga,which indicates partial melting of continental-crust metamorphic sedimentary rocks during the Middle Proterozoic.The cooling history of the Zhangtiantang granitic pluton indicates that the cooling velocity of pluton was faster(about 67℃ /Ma) from zircon(158 Ma) to biotite(152 Ma),and was slower(about12℃ /Ma) from biotite(152.5 Ma) to K-feldspar(135.8 Ma).It can be deduced that the temporal gap(about 10 Ma) between the granite formmation and W-Sn mineralization in South China may be related to ordinary magma-hydrothermal processes by the variational cooling curve of the pluton.The Zhangtiantang pluton was formed in a compressive setting,with differentiation evolution and mineralization occurring in a relative relaxation setting.
二、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文提纲范文)
(1)Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications(论文提纲范文)
1 Introduction |
2 Geographic and Hydrological Background of the Yangtze River |
3 Samples and Experiments |
3.1 Sample collection |
3.2 Chemical and mineral analyses |
3.3 Isotopic analyses |
3.3.1 Hydrogen and oxygen isotope analyses of water |
3.3.2 Sulfur isotope analyses of the sulfate in water |
3.3.3 B and Sr isotope analyses of water |
3.3.4 O isotope analyses of SPM |
3.3.5 Si isotope analyses of SPM and dissolved Si in water |
4 Spatial and Temporal Variations of H and O Isotope Compositions of the Yangtze River Water and their Environmental Implications |
4.1 Spatial and temporal variations of δD and δ18O values of the Yangtze River water |
4.1.1 The variation range of H and O isotope compositions of the Yangtze River water |
4.1.2 The spatial variation of the δD and δ18O values of the Yangtze River water |
4.1.3 The temporal variation of the δD and δ18O values of the Yangtze River water |
4.2 The major factors controlling the δD and δ18O variations of the Yangtze River water |
4.2.1 The relationship between the δD and δ18O values of the river water and meteoric water in the Yangtze River drainage area |
4.2.2 The effect of evaporation on the H and O isotope compositions of the Yangtze River water |
1) The effect of evaporation in the lakes of the Qinghai- Tibet Plateau |
2) The evaporation effect in the lakes of the middle and lower reaches |
4.2.3 The δD and δ18O values of water in different river section and its implication |
5 The Characters of SPM in the Yangtze River Water and their Geochemical and Environmental Significance |
5.1 The SPM contents in the Yangtze River water |
5.1.1 A comparison between the average SPM content of the Yangtze River and those of some other large rivers in the world |
5.1.2 The spatial and temporal variation of the SPM content in the Yangtze River |
1) The SPM content is closely related to the slope of the river bed and the flow speed in the Yangtze River |
2) The Three Gorges Reservoir has enormous effect on the SPM content of the YangtzeRiver water |
3) The seasonal and annual variation of the SPM content in the Yangtze River |
4) The variation of the SPM contents in the tributaries and their effect to the SPM content in the mainsteam. |
5.2 The mineral composition in the SPM of the Yangtze River |
5.3 The chemical characters of the SPM in the Yangtze River |
5.3.1 The major element compositions of the SPM in the Yangtze River |
5.3.2 The contents of trace elements in the SPM of the Yangtze River |
5.3.3 The REE contents in the Yangtze River SPM,and their geological implication |
5.4 The Si and O isotope characters of the Yangtze River SPM and its geological implication |
6 Chemical Characters of the Dissolved Matter in the Yangtze River Water and their Geochemical and Environmental Significance |
6.1 Contents of major anions in the Yangtze River water |
6.1.1 A comparison of average contents of majoranions in the Yangtze River water with those in the Yellow River and other world’s large rivers |
6.1.2 Spatial and temporal variations of the contents of major anions in the Yangtze River water |
6.2 Contents of the major cations in the Yangtze River water |
6.2.1 A comparison of average contents of majorcations in the Yangtze River water with those in the Yellow River and other world large rivers |
6.2.2 Spatial and temporal variations of the contents of major cations in the Yangtze River water,and their implications |
6.3 Contents of trace elements in the Yangtze River water |
6.3.1 A comparison of average contents of Cu, Zn and Cd in the Yangtze River water with those in the Yellow River and average world large rivers |
6.3.2 Spatial and temporal variations of contents of some trace elements in the Yangtze River water |
6.4 Contents of REE in the Yangtze River water |
6.4.1 Spatial and temporal variations of ΣREE contents in the Yangtze River water |
6.4.2 Global average shale normalized REE distribution pattern of the Yangtze River water |
6.4.3 A comparison of average REE content in the Yangtze River water with those in the Yellow River and in the Xijiang River |
7 Isotopic Characters of Dissolved Matter in the Yangtze River Water and their Geochemical and Environmental Significance |
7.1 Si isotope compositions of the dissolved silicon in the Yangtze River water and their implication |
7.2 Sr, S and B isotope compositions of the dissolved material in the Yangtze River water and their geochemical and environmental implications |
8 Conclusions |
(2)若干中国银杏目化石的命名问题(英文)(论文提纲范文)
1 NAMES ESTABLISHED WITHOUT A DEFI-NITE INDICATION OF THE TYPE SPECI-MEN (HOLOTYPE) |
2 NAMES NOT VALIDLY PUBLISHED WITHNO ACCOMPANYING LATIN OR ENGLISHDIAGNOSES |
Antholithus ovatus Wu ex Yang, Wu and Zhou |
Eretmophyllum latifolium Meng ex Yang, Wu and Zhou |
Ginkgo taipingensis Gong ex Yang, Wu and Zhou |
Ginkgoites yaojiensis Sun ex Yang, Wu and Zhou |
Sphenobaiera beipiaoensis Mi, C.Sun, Y.Sun, Cui and Ai ex Yang, Wu and Zhou |
Sphenobaiera qaidamensis Zhang ex Yang, Wu and Zhou |
3 LATER HOMONYM |
Glossophyllum?yangii Yang, Wu and Zhou, nom. nov. |
4 NEW COMBINATIONS |
Sphenobaiera huangii (Sze) Hsüex Lee, 1963 |
(3)Chemical Compositions and Sr-Nd Isotopic Fingerprints of Sediments in the Selected River Systems of India and China(论文提纲范文)
摘要 |
Abstract |
Abbreviations of analytical terms |
Abbreviations of geographical terms |
Chapter Ⅰ: Introduction |
1.1 General introduction |
1.2 Sr-Nd isotopes as geochemical tracers |
1.3 Scientific background |
1.3.1 Indian scenario |
1.3.2 Chinese scenario |
1.4 Importance of the research investigation |
1.5 Approach, hypothesis and objectives |
Chapter Ⅱ: Materials and methods |
2.1 Description of the study area |
2.2 Geology and geomorphology setting |
2.2.1 Narmada River basin |
2.2.2 Netravati River basin |
2.2.3 Changjiang (CJ) basin |
2.3 Climatology pattern |
2.3.1 Climate and monsoon patterns in Indian rivers |
2.3.2 Climate patterns in Changjiang |
2.4 Sample collection |
2.4.1 Water samples for SPM and bottom sediment |
2.5 Analytical methods |
2.5.1 Grain size analysis |
2.5.2 Analytical methodology developement for sample decomposition and Sr and Nd isotopic analysis |
2.6 Experimental |
2.6.1 Reagents and materials |
2.6.2 Sample decomposition, column preparation and arrangement |
2.6.2.1 Digestion and evaporation methods |
2.6.2.2 Column set up |
2.7 Column chemistry |
2.7.1 Extraction chromatographic separation of Rb-Sr |
2.7.2 Extraction chromatographic separation of Nd-Sm |
2.7.3 Optimization of the column elution |
2.7.4 Analyte recoveries obtained after column separation |
2.7.5 Procedural blanks and resin regeneration |
2.8 Instrumentation |
2.8.1 Elemental analysis |
2.8.2 Isotope ratio determination |
2.8.3 Analytical precision and accuracy of SRMs obtained for elemental analysis on HR-ICP-MS |
2.8.4 Validation of the method and analytical precision of Sr-Nd isotopes for SRMs on MC-ICP-MS |
2.8.4.1 Strontium isotopic ratios |
2.8.4.2 Neodymium isotopic ratios |
2.9 Effect of interferences and their corrections |
2.9.1 Effect of residual amount of Rb and Sm on Sr-Nd isotope ratios |
2.9.2 Corrections for ~(87)Rb and ~(147)Sm interference |
2.10 Data processing and statistics |
2.10.1 Nd model ages |
2.10.2 Multivariate statistical analysis |
2.10.3 Principal component analysis (PCA) |
2.10.4 Correlation coeffient |
2.10.5 Assessment of sediments based on elemental concentrations |
2.10.5.1 Alteration factor |
2.10.5.2 Pollution load index |
2.10.6 Weathering Indices |
2.10.7 Mixing model |
Chapter Ⅲ: Sr-Nd isotopic fingerprinting of sediments and suspendedparticulate in monsoon dominated river systems along the West coast of India(Narmada and Netravati) |
3.1 Introduction |
3.2 Sampling and analysis |
3.3 Results |
3.3.1 Sr-Nd isotopic composition of sediments in acid soluble (AS) and silicate (acid insoluble)fraction |
3.3.2 Sr-Nd isotopic composition of SPM |
3.3.3 Nd model ages |
3.4 Discussion |
3.4.1 Isotope characteristics of sediments and its control by source rocks |
3.4.1.1 Source fingerprinting |
3.4.1.2 Crustal source and mixing |
3.4.1.3 Implication for crustal evolution |
3.4.2 Sr-Nd isotopic characteristics of SPM |
3.4.2.1 Seasonal control on Sr isotopes in SPM |
3.4.2.2 Nd isotopic characteristics of the SPM |
3.4.3 Seasonal isotopic Sr-Nd suspended fluxes and its global implications |
3.5 Summary |
Chapter Ⅳ: Elemental geochemistry in sediments from tropical monsoon-influenced watersheds along the West coast of India:an assessment ofalteration levels |
4.1 Introduction |
4.2 Sampling and analysis |
4.3. Results |
4.3.1 Elemental geochemistry |
4.3.1.1 Geochemistry of SPM |
4.3.1.2 Geochemistry of bedload sediments |
4.3.2 Variations in REE concentration of SPM and bedload sediments |
4.3.3 Evaluation of sediment pollution |
4.3.4 Percent distribution of Acid soluble trace metals (AS) and acid insoluble (AI) trace elements |
4.3.5 Principal component analysis |
4.4 Discussion |
4.4.1 Chemical weathering and controlling factors in SPM and sediments |
4.4.2 Weathering intensity and provenance between the Narmada and Netravati Rivers |
4.4.3 REE characteristics of the SPM and sediments |
4.4.4 Elemental and REE fractionation in sediments |
4.4.5 Pollution status of the sediments |
4.4.6 Factors influencing the geochemical parameters |
4.5 Summary |
Chapter Ⅴ: Sr and Nd isotope characteristics of Changjiang sediments:Sourcedistinctiveness in different geographic regions and its geological significance |
5.1 Introduction |
5.2 Sampling and analysis |
5.3 Results |
5.3.1 Grain Size variation |
5.3.2 Variations in Sr-Nd isotopes |
5.3.3 Model ages |
5.4 Discussion |
5.4.1 Isotopic variation with grain size |
5.4.2 Sr-Nd suspended fluxes |
5.4.3 Sr isotopic characteristics and its implications |
5.4.4 Nd isotopes and its characteristics |
5.4.5 Source of sediments |
5.4.6 Comparison to the other Himalayan Rivers |
5.5 Summary |
Chapter Ⅵ: Provenance and erosion constraints from seasonal variations inthe chemical and Sr-Nd isotopic compositions of suspended particulate matterat Xuliujing Station in the lower Changjiang |
6.1 Introduction |
6.2 Climatic and geological setting |
6.3 Sample collection |
6.4 Results |
6.4.1 Major elements, Rb, Sr and REE concentrations |
6.4.2 Temporal variations in Sr and Nd isotopic composition of SPM |
6.4.3 Model Ages |
6.5 Discussion |
6.5.1 Geochemistry of SPM its source and causes for seasonal variation |
6.5.2 T_(DM)~(Nd):implications to tectonic terranes |
6.5.3 Source contribution |
6.5.4 Seasonal SPM flux |
6.6 Summary |
Chapter Ⅶ: Elemental geochemistry of riverbed and suspended sediments inthe Changjiang Basin |
7.1 Introduction |
7.2 Sampling and analysis |
7.3 Results and discussion |
7.3.1 Elemental concentrations and ratios |
7.3.2 Assessment of changes in chemical composition due to sedimentary sorting |
7.3.2.1 Alkali and alkaline earth elements |
7.3.2.2 Transition elements |
7.3.2.3 Heavy metals |
7.3.2.4 Rare earth elements |
7.3.3 Intensity of weathering |
7.3.4 Weathering trends and mineral dissolution |
7.3.5 Provenance indicators |
7.3.6 Elemental relation with Sr-Nd isotopes |
7.3.7 Acid-leachable and residual elements |
7.3.8 Evaluation of sediment quality based on comparison of elemental contents in present and past sediments (two decades) of the CJ |
7.4 Summary |
Chapter Ⅷ: Conclusions and directions for future research |
8.1 General concluding remarks |
8.2 Chapter wise conclusions |
8.3 Global significance and synthesis |
8.3.1 Distribution of Sr and Nd isotopes in global rivers |
8.3.2 Relationship with physiographic feature |
8.4 Future directions |
References |
Appendix |
攻读博士学位期间发表的论文 |
Acknowledgement |
(4)中国白垩纪植物群与生物地层学(论文提纲范文)
1 Introduction |
2 Cretaceous plant fossil-bearing strata of China |
3 Phytogeographical regions of Cretaceous floras in China |
4 Characteristics of the Early Cretaceous floras |
4.1 North China Phytogeographical Region |
4.1.1 Jehol flora |
4.1.2 Fuxin flora |
4.1.2. 1 Acanthopteris-Ginkgo coriacea Assemblage |
4.1.2. 2 Ruffordia-Dryopterites assemblage |
4.1.2. 3 Ctenis lyrata-Chilinia assemblage |
4.1.3 Dalazi flora |
4.2 South China Phytogeographical Region |
4.2.1 Eastern sub-region |
4.2.1. 1 Zhejiang, Jiangsu and Anhui |
4.2.1. 2 Fujian |
4.2.1. 3 Shandong |
4.2.1. 4 Other areas |
4.2.2 North Tibet sub-region |
4.2.3 Center sub-region |
4.3 South Tibet Phytogeographical Region |
5 Characteristics of the Late Cretaceous floras |
6 Stratigraphical Correlation |
6.1 Lower Cretaceous |
6.1.1 North China Phytogeographical Region |
6.1.2 South China Phytogeographical Region |
6.2 Late Cretaceous plant-fossil-bearing strata of China |
(5)河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示(论文提纲范文)
1 引言 |
2 区域地质与矿床地质 |
2.1 区域地质 |
2.2 矿床地质 |
3 样品与分析结果 |
3.1 矿物化学成分 |
3.2 矿石地球化学特征 |
4 成因讨论 |
4.1 铁山庙式铁矿的成因 |
4.2 不同类型矿石的成因联系 |
5 结论 |
(6)SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting(论文提纲范文)
INTRODUCTION |
REGIONAL GEOLOGICAL CHARACTERISTICS |
PETROLOGICAL CHARACTERISTICS |
CHARACTERISTICS OF GEOCHEMISTRY AND GEOCHRONOLOGY |
Analytical Methods |
Characteristics of Geochemistry Major elements |
Rare earth elements |
Trace elements |
Geochemistry characteristics of Rb-Sr and Sm-Nd isotope |
Zircon SHRIMP U-Pb Geochronology |
DISCUSSION |
Formation Age of Neoproterozoic Huangling Granitic Complex |
Tectonic Setting of Neoproterozoic Huangling Granitic Complex |
CONCLUSIONS |
(7)广东韶关市一六钨矿床流体包裹体特征及成矿作用(论文提纲范文)
1 成矿地质背景 |
2 样品采集及研究方法 |
3 流体包裹体研究 |
3.1 岩相学特征 |
3.2 流体包裹体显微测温结果 |
3.2.1 钾长石英白钨矿阶段包裹体测温特征 |
3.2.2 云母石英脉阶段包裹体测温特征 |
3.3 激光拉曼探针分析 |
4 讨论 |
4.1 成矿流体特征 |
4.2 成矿压力及深度 |
4.3 成矿流体演化特征 |
4.4 成矿作用分析 |
5 结论 |
(8)江陵凹陷南缘盐井-申津渡凹地始新统硫同位素特征及古气候和物质来源探讨(论文提纲范文)
1 地质背景 |
2 样品采集和分析方法 |
3 蒸发岩盐类矿物和沉积特征 |
4 钙芒硝硫同位素特征 |
5 讨论 |
6 结论 |
(9)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)
1 The History and Present Situation of the Research on the History of International Geological Science |
1.1 The change of the content of the study |
1.2 Organizations and research institutes |
1.3 Publications and authors |
2 The Present Situation and Progress of the Study of the Chinese Geological Science History |
2.1 A brief account of the development of the Chinese geological science history |
2.2 Research institutes and research groups |
2.3 The guiding ideology of the research on the history of geological science |
2.4 Major progress in recent years |
2.4.1 Promote interaction between Chinese geological science and social development in China |
2.4.2 A study on the history of geological disciplines of China |
2.4.3 A study of geological characters |
Kwong Yung Kong(1863-1965) |
Woo Yang Tsang(1861-1939) |
Gu Lang(1880-1939) |
Lu Xun(1881-1936) |
Wang Chongyou(1879-1985) |
Zhang Hongzhao(1877-1951) |
Ding Wenjiang(1887-1936) |
Weng Wenhao(1889-1971) |
Li Siguang(1889-1971) |
R.Pumpelly(1837-1923) |
Richthofen,Ferdinand von(1833-1905) |
Amadeus Willian Grabau(1870-1946) |
Johann Gunnay Andersson(1874-1960) |
Prerre Teilhaya de Chardin(1881-1955) |
2.4.4 The study of history of ancient geological thoughts |
2.4.5 The study of the geological cause |
2.4.6 Research of the history of the communication of Chinese and foreign geological science |
3 Development Prospect |
4 Conclusion |
(10)Geochemical characteristics,cooling history and mineralization significance of Zhangtiantang pluton in South Jiangxi Province,P.R. China(论文提纲范文)
1 Introduction |
2 Geology and petrology of the pluton and its relation with W mineralization |
2.1 Geology and petrology of the pluton |
2.2 Relationship between the pluton and W miner-alization |
3 Analytical methods |
3.1 Zircon U-Pb SHRIMP dating |
3.2 Single mineral Ar-Ar analytical method |
3.3 Element geochemistry |
3.4 Sr-Nd isotopes |
4 Results |
4.1 Geochronology |
4.2 Geochemistry |
4.3 Isotope geochemistry |
5 Discussion |
5.1 Thermal evolution history |
5.2 Petrogenesis |
5.3 Tectonic environment |
6 Conclusions |
四、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文参考文献)
- [1]Chemical and Isotopic Characteristics of the Water and Suspended Particulate Materials in the Yangtze River and Their Geological and Environmental Implications[J]. DING Tiping,GAO Jianfei,TIAN Shihong,SHI Guoyu,CHEN Feng,WANG Chengyu,LUO Xurong,HAN Dan. Acta Geologica Sinica(English Edition), 2014(01)
- [2]若干中国银杏目化石的命名问题(英文)[J]. 杨小菊,吴向午,周志炎. 古生物学报, 2014(03)
- [3]Chemical Compositions and Sr-Nd Isotopic Fingerprints of Sediments in the Selected River Systems of India and China[D]. SONALI UMESH PRADHAN. 华东师范大学, 2017(04)
- [4]中国白垩纪植物群与生物地层学[J]. 邓胜徽,卢远征,樊茹,李鑫,方琳浩,刘璐. 地层学杂志, 2012(02)
- [5]河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示[J]. 兰彩云,张连昌,赵太平,王长乐,李红中,周艳艳. 岩石学报, 2013(07)
- [6]SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting[J]. 魏运许,彭松柏,蒋幸福,彭中勤,彭练红,李志宏,周鹏,曾雄伟. Journal of Earth Science, 2012(05)
- [7]广东韶关市一六钨矿床流体包裹体特征及成矿作用[J]. 唐一昂,赖健清,杨牧,梅嘉靖,刘启,吴剑,谌后成,郭兰萱,胡理芳,和秋姣. 地质学报, 2017(10)
- [8]江陵凹陷南缘盐井-申津渡凹地始新统硫同位素特征及古气候和物质来源探讨[J]. 颜开,刘成林,王九一,王春连,徐海明,王春林,余小灿,孟令阳. 地质学报, 2018(08)
- [9]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)
- [10]Geochemical characteristics,cooling history and mineralization significance of Zhangtiantang pluton in South Jiangxi Province,P.R. China[J]. MAO Jianren1,LI Zilong2,ZHAO Xilin1,ZHOU Jie1,YE Haimin1,and ZENG Qitao3 1 Nanjing Institute of Mineral Resources,Nanjing 210016,China 2 Department of Earth Sciences,Zhejiang University,Hangzhou 310027,China 3 Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Chinese Journal of Geochemistry, 2010(01)